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We study the nature of the frictional jamming transition within the framework of rigidity percolation theory.
Slowly sheared frictional packings are decomposed into rigid clusters and floppy regions with a generalization of
the pebble game including frictional contacts. Our method suggests a second-order transition controlled by the
emergence of a system-spanning rigid cluster accompanied by a critical cluster size distribution. Rigid clusters
also correlate with common measures of rigidity. We contrast this result with frictionless jamming, where the
rigid cluster size distribution is noncritical.

The interplay of constraints, forces, and driving gives rise
to the jamming transition in granular media. It is now well-
established that the frictionless jamming transition has char-
acteristics of both second- and first-order transitions. Both
the average coordination number and the largest rigid clus-
ter size jump at the transition, yet there exists a diverging
lengthscale [1–4]. Frictional jamming is more puzzling: The
hysteresis observed in the stress-strain rate curves of stress-
controlled flow simulations [5–9] and experiments [10] has
lead to an interpretation as a first-order transition. Yet, signs
of second-order criticality appear when treating the fraction
of contacts at the Coulomb threshold as an additional param-
eter [11–13]. To elucidate the frictional jamming transition
from a microscopic viewpoint, we extend concepts and tools
from rigidity percolation, i.e., the onset of mechanical rigidity
in disordered spring networks [14–17], to frictional packings.
The former is driven by the emergence of a system-spanning
rigid cluster that can be mapped out (in 2d) using the peb-
ble game [18], an improved constraint counting method that
goes beyond mean-field by identifying redundant constraints.
We, for the first time, implement a generalized pebble game
for 2d frictional systems and use it to identify rigid clusters
in quasistatically [5] sheared packings. As we show below,
this allows us to identify a second-order transition where rigid
clusters emerge out of a viscous backdrop, connecting stresses
and nonaffine motions to the microscopic structure.

Generalized isostaticity: To establish context, we first re-
view the application of Maxwell constraint counting to jam-
ming [19]. For N particles in d dimensions and a mean num-
ber of contacts per particle z, interparticle forces yield dzN/2
constraints. Since each particle has 1

2 d(d + 1) translational
and rotational degrees of freedom, there are 1

2 (N−1)d(d+1)
total degrees of freedom (subtracting out global degrees of
freedom). When these match the force constraints, we arrive
at the isostatic criterion, or dzN/2 = 1

2 (N − 1)d(d + 1). In
the limit N→ ∞, ziso = d+1 for frictional granular materials.
For frictionless packings, we ignore rotations and obtain the
familiar ziso = 2d.

Despite being mean field, i.e. neglecting spatial correla-
tions, isostaticity works seemingly well to locate the jamming
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FIG. 1. The pebble game and rigidity percolation for a N = 1024
frictional packing. a - Force chains, with anisotropy due to sim-
ple shear. b - Contact network, with frictional (black) and sliding
contacts (red). c - Result of the (3,3) pebble game where frictional
and sliding contacts are mapped to double (thick) and single (thin)
bonds, respectively. Red are pebble-covered bonds, green are over-
constrained bonds; colored disks are leftover pebbles. d - Rigid clus-
ter decomposition revealing a partially rigid packing with three rigid
clusters (black, purple and green) and regions of floppy bonds (gray).

transition in static frictionless systems [1]. For frictional sys-
tems, however, numerical and experimental evidence point to
a range d +1 < z < 2d at the transition, with a matching den-
sity range from random loose packing [20] to random close
packing. To resolve this conundrum, a generalized isostaticity
criterion was introduced [11, 12], that accounts for contacts at
the Coulomb friction threshold providing one less constraint

zm
iso = (d +1)+2nm/d, (1)

where nm is the mean number of such fully mobilized con-
tacts per particle. Equation (1) describes a line of transition
points interpolating from z = d + 1 at nm = 0, corresponding
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to the friction coefficient µ = ∞ limit, to nm = 1 at ziso = 4,
corresponding to the µ = 0 limit [11].

Simulation. To obtain packings near jamming for the non-
conservative frictional interaction, energy-minimization is not
an option. Instead, we implement a common protocol, simple
shear at strain rate γ̇ in Lees-Edwards boundary conditions.
As we decrease the strain rate, we move towards a limit where
a set of force-balanced quasistatic states compete with driving
and dissipation. The mechanical properties of these states be-
come increasingly relevant as dissipation decreases, as mea-
sured by low values of the inertial number I = γ̇

√
m/p [5],

where p is the pressure and m is the mass. We use the tools of
rigidity percolation to explore them.

We simulate systems of N = 64− 4096 polydisperse disks
in two dimensions interacting according to the Cundall-Strack
law [21]. To harmonic purely repulsive normal forces fn =
knδ , (δ is the particle overlap), it adds an incremental tan-
gential force d ftan = ktdt, where dt is the tangential slid-
ing since establishing the contact. The friction force is con-
strained by the Coulomb criterion | ft | ≤ µ fn; once the thresh-
old is reached, contacts continue to slide at | ft | = µ fn until
the direction reverses. The energy injected into the system by
shearing is dissipated through linear viscous damping forces,
fζ

i j =−ζ (vi−v j) (cut off such that interparticle forces remain
strictly compressive), and a small amount of rotational indi-
vidual damping. We work in scaled units with mean particle
radius 〈r〉 = 1 and unit stiffness kn = kt = 1. Most results
below are in the low-friction µ = 0.1, low-damping ζ = 0.1
limit, for N = 1024 particles except where specified other-
wise. We report additional results for high µ = 1 and high
ζ = 1 in Figures S4 and S6, respectively. Systems are strained
for T = 106 time units in all cases, corresponding to a strain
of 10 system lengths for γ̇ = 10−5 strain rate, and 1 system
length for γ̇ = 10−6.

Rigidity percolation. We decompose packings into rigid
clusters using a (k = 3, l = 3) pebble game [18]: First, we
associate a pebble with each of the k = 3 degrees of freedom
of a particle. We then build a constraint network from the con-
tact network where a contact imposing n constraints translates
to n bonds, i.e., fully mobilized contacts with | ft |= µ fn yield
one bond while contacts with | ft | < µ fn yield two (Fig. S1).
The game recursively moves these pebbles along bonds in the
constraint network to assign pebbles to bonds, each pebble-
covered bond corresponds to a degree of freedom being inde-
pendently constrained. We continue until l = 3 or more peb-
bles cannot be assigned. Finally, we map out the rigid clusters
for each contact network. This algorithm is an extension of
the (2,3) pebble game used in the frictionless case. Please
see the Supplementary Information [33] and Fig. S2 for more
details.

In Fig. 1, we show the four stages of moving from the sim-
ulated packing to the rigid cluster decomposition. The force
chains in Fig. 1a correspond to the constraint network in Fig.
1b and 1c, with frictional contacts (double bonds) in black,
and sliding contacts (single bonds) in red. This network forms
the basis for the (3,3) pebble game in Fig.1c. In our exam-

ple, it is possible to assign pebbles to most of the bonds in
the network without overconstraining it. In agreement with
the beyond-mean field nature of Laman’s theorem (see SI), a
number of leftover pebbles also remain, especially at rattlers
but also at connected particles (colored circles). Finally, in
Fig. 1d, we decompose the system into rigid clusters, that is
connected regions where no more than the 3 pebbles linked
to the global translations and rotations can be found. We find
three rigid clusters including a large, system-spanning one.
The remaining bonds are floppy, i.e. not rigid with respect
to any of their neighbouring bonds. Our example system is
globally rigid, in spite of an average z below generalized iso-
staticity. We show that such configurations are generic below.
Let us point out that in granular packings, contacts also need
to be able to support a compressive load at the given friction
coefficient. Therefore, the (3,3) pebble game provides a nec-
essary, but not sufficient condition for rigidity. We discuss the
stabilizing role of viscous forces further below.

Results: We first address how the global properties of the
system, including mean stresses and distance from isostaticity,
depend on density, strain rate and system size (Fig. 2). Ex-
perimental [10] and simulated frictional systems [6–9] report
a hysteresis loop in the stress-strain relations, through a pro-
tocol that includes either strain rate ramps or constant stress
driving. As a function of density, φ = 0.8225− 0.84, we see
a transition through jamming, as evidenced by the pressure
distribution shifting from a peak at 10−4 (in units of overlap)
to a peak at 10−2 (Fig. 2a; in Fig. S3 we show that p and
σxy are equivalent). Since we perform a constant strain rate
simulation, we do not observe hysteresis. We instead find in-
termittent flips between jammed and unjammed states in the
transition region, in particular φ = 0.8275 and φ = 0.83 (see
Fig. 3). When lowering strain rates, a gap in pressure opens
between low and high densities, consistent with an approxi-
mately Bagnold scaling p∼ γ̇1/2 dominated by viscous damp-
ing forces below jamming, and the appearance of a yield stress
above jamming (Fig. 2b). As intended, the inertial number I
in our simulation is in the quasistatic regime I < 0.001 for all
but the most unjammed packings (Fig. 2c, inset).

We focus our attention on the parameter dz = z− zm
iso, i.e.

the distance from generalized isostaticity. For each γ̇ , all of the
data for different packing fractions and system sizes collapses
onto a unique curve p(dz) (Fig. 2c). For the two lower γ̇ , we
see two regimes – a rapid drop below dz≈ 0 which depends on
γ̇ , separated from a more gradual, universal increase at dz> 0.
The small, positive values of the pressure for dz < 0 strongly
depend on ζ (see Fig. S5), indicating again that viscous damp-
ing forces dominate this regime, consistent with recent results
for shear thickening in suspensions [22]. When we visual-
ize our system in a two dimensional nm − z phase diagram
(Fig. 2d), jammed (blue) states defined here by p ≥ 10−3 ex-
ist predominantly in the stable region of the phase diagram
below the stability line, while unjammed (red) states mostly
exist in the unstable region. There are however significant
fluctuations in the transition region with some jammed states
below the stability line, suggesting that this mean-field crite-
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FIG. 2. a - Pressure distributions for 8 densities φ = 0.825− 0.84 accross the frictional jamming transition, for N = 1024 and γ̇ = 10−5.
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unjammed (red) packing.
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FIG. 3. Temporal correlation between rigidity and stresses. Left:
Pressure trajectories for four densities close to jamming (log-scale),
followed by the fraction of the system that is rigid, (frac), the x-length
of the largest cluster and the y-length of the largest cluster. Right:
Time correlation between pressure and rigidity 〈frac(t) log p(t+dt)〉.

rion is insufficient (Fig. 2e). System trajectories have roughly
equal fluctuations in z and nm, unlike the avalanching system
of [13], where fluctuations along nm were more prominent,
showing that trajectories depend on driving protocol.

We now present results of the rigid cluster decomposition
using the (3,3) pebble game. To demonstrate the structural
importance of the rigid clusters, we first correlate the time se-
ries of rigidity and pressure in the region where we observe
intermittent behavior (see Fig. 3). In the second, third and
fourth panel, respectively, we show the fraction frac of the
bonds belonging to a rigid cluster, the x-extent Lx and the y-
extent Ly of the largest cluster (normalized by system size L).
Rigid systems are characterized by frac≈ 1, and system span-
ning clusters in both directions. All three measures correlate
with pressure and with each other, though switches between
globally rigid and floppy states are significantly faster than
pressure changes. On the right (Fig. 3b), the correlation func-
tion 〈frac(t) log p(t + dt)〉 shows strong, symmetric correla-
tions for the mostly unjammed runs φ = 0.8225−0.83, and a
slight asymmetry indicating that pressure follows rigidity, for
the jammed runs φ = 0.8325−0.84.

Fig. 2 shows that dz is an appropriate mean-field parameter.
From Fig. 3, we conclude that the spatial decomposition in-
deed plays a role in the macroscopic response of the system.
We now ask how rigid cluster analysis can help uncover the
nature of the frictional jamming transition. In Fig. 4, top row
left, we show the rigid cluster size distribution p(n), where n is
the number of bonds per cluster, across the transition. We ob-
serve curves characteristic of a second-order phase transition,
with a p(n) that broadens approaching the transition, and then
the emergence of a system-size percolating cluster above the
transition. At the transition, we observe a power-law distribu-
tion with an exponent α '−2.5. For comparison, for connec-
tivity percolation in two dimensions α = −187/81 = −2.31
[23] and a self-organized rigidity percolation model yields
α = −1.94 [24]. To help pinpoint the location of the tran-
sition, we plot the maximum cluster length (L2

x +L2
y)

1/2/
√

2L
against dz. It approaches unity near dz = −0.15 rather than
dz = 0, consistent with the picture of rigid and floppy regions
coexisting in an overall rigid system emerging from Fig. 1.
So does an equivalent measure, the spanning probability (Fig.
S9). Moreover, this downward shift survives in the large N
(Fig. 4 top right) and the γ̇ → 0 (Fig. S8) limit.

As comparison, we simulate a frictionless system across its
frictionless jamming transition [25] with the same protocol as
our frictional runs (Fig. 4, bottom row). Rotations are irrel-
evant to frictionless disks, so we use a standard (2,3) pebble
game here (see SI). In stark contrast to the second-order transi-
tion above, here we observe the hallmarks of a first-order tran-
sition: The rigid cluster size distribution is either rapidly de-
caying at low pressures (most packings have no rigid clusters
at all), or markedly bimodal without any intermediate-sized
clusters for an order of magnitude. The largest rigid cluster
length is gapped (Fig. 4 right, inset), and depends strongly on
system size. This finding is consistent with recent results for
frictionless systems where packings were found to be either
fully rigid or fully floppy [2]. Again, we observe a downward
shift in the transition point. Recent work demonstrates that
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the frictionless transition point can change with protocol [26].
We now address the links between rigid clusters and local

forces and displacements (see Fig. 5). First we measure the
mean bond normal force scaled by the packing pressure fn/p
for bonds belonging to either a rigid cluster or a floppy region,
ensemble-averaged over packings with similar dz (left). Be-
low the transition no force difference exists between rigid and
floppy regions: viscous forces stabilize isolated rigid clusters
and the overall packing is not rigid and has very low pres-
sure. Viscous forces dominate the stresses since no spanning
cluster can bear the load. When a percolated rigid cluster
structure appears, both its share of the normal force and the
pressure rapidly increase with dz; the remaining force on the
floppy regions strongly depends on ζ . Finally, the unstable re-
gions become isolated rattlers which bear no load. The grad-
ual decrease of non-load bearing rattlers above jamming is
well-known in static systems [27]; we put it into a dynami-
cal context here for the first time. Spatial correlations in the
forces are also found in shear jamming with the transition oc-
curing below the isostatic point [10]. In a pattern resembling
swiss cheese, we find that force chain bridge structures bend
around convex floppy regions (Figure S5).

The second measure are the nonaffine motions, which
are known to dramatically increase approaching the friction-
less [28] and frictional [12] jamming transitions. We measure
the relative tangential motion of the centers 〈|dt |〉 and tangen-
tial sliding at the contacts 〈|dtang|〉. Let ri j = r j(t)− r j(t) be
the vector linking two neighbouring particles’ centers, t̂i j the
tangential unit vector at the contact, Ri the particle radii, and
αi their angles (see Fig. S1). Then [12, 29]

di j
t = ṙi j · t̂i j, di j

tang = ṙi j · t̂i j− (Riα̇i +R jα̇ j) . (2)

Normalized by the strain rate γ̇ , nonaffine motion is signalled
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by values above 0.5. For both rigid and floppy regions, above
and below the transition, motion is strongly nonaffine (Fig.
5, right, note log scale). However, displacements in floppy
regions are much more nonaffine compared to rigid regions,
even below the transition where rigid clusters are discon-
nected, and culminating in values dt/γ̇ > 20 for isolated rat-
tlers in rigid packings. The normal displacements remain at
dn/γ̇ ≈ 0.5 throughout (see Fig. S3). Links between non-
affine buckling and local rigidity have been pointed out pre-
viously [30]. We also observe a peak in the total nonaffine
motion accross the transition.

Conclusions: In sum, we adapt ideas from rigidity per-
colation to characterize the frictional jamming transition of
slowly sheared packings beyond mean-field level. We show
that while generalized isostaticity is a good mean-field crite-
rion, spatial correlations do matter: a packing can be jammed
below global isostaticity if it contains both floppy regions and
a system-spanning rigid cluster, resembling spring networks
in this regard. The emergence of such a cluster appears to be
first-order in frictionless packings, with a sudden jump from
microscopic to system-wide clusters, but second-order in the
frictional case, with a power law distribution of cluster sizes at
the transition. In particular, partial rigidity is unique to fric-
tional packings. The key instrument in obtaining those new
results is rigid cluster decomposition. It allows us to draw
connections between disordered spring networks, where it is
the norm, and granular packings [2, 31]. By nature, cluster de-
composition ignores contact force constraints. Accordingly,
we find that rigidity only correlates with local stresses once
arching around floppy regions becomes possible. Conversely,
below the transition viscous forces dominate stress, linking
our results to granular flow findings [5]. Cluster decomposi-
tion, on the other hand, does account for the dynamical nature
of fully-mobilized contacts, thus highlighting their central role
in frictional packings. Applied strain leads to internal rear-
rangements, moving through a phase space of rigid, non-rigid
and crucially partially rigid packings due to the second-order
nature of the transition. Incorporating this internal variance
of accessible states through an internal field, Grob et al. were
able to explain the phenomenology of hysteresis in frictional
jamming [9]. DeGiuli et al [32] also highlight a non-universal
‘sliding-contacts’ dominated region of the phase diagram we



5

find ourselves in at I < 0.001, µ = 0.1. Our work begins to
provide a microscopic basis for such phenomenology.
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