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The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl
nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly
polarized photons with these chiral electrons generates a Hall conductivity without any applied
magnetic field in the plane orthogonal to the light propagation. This phenomenon comes about
because with all three Pauli matrices exhausted to form the three-dimensional linear dispersion, the
Weyl nodes cannot be gapped. Rather, the net influence of chiral photons is to shift the positions
of the Weyl nodes. Interestingly, the momentum shift is tightly correlated with the chirality of the
node to produce a net anomalous Hall signal. Application of our proposal to the recently discovered
TaAs family of Weyl semimetals leads to an order-of-magnitude estimate of the photoinduced Hall
conductivity which is within the experimentally accessible range.

PACS numbers: 73.43.-f, 03.65.Vf, 72.40.+w

Introduction - Previously thought to be an asset ex-
clusive to massless elementary particles such as photons,
chirality has now become a defining emergent property
of electrons in such crystalline materials like graphene [1]
and the surface of topological insulators [2]. An excit-
ing new addition to the growing list of “chiral electronic
materials”is the Weyl semimetal [3–7]. In this three-
dimensional analogue of graphene, the Weyl nodes act
as magnetic monopoles in momentum space [8]. In sharp
contrast to the two Dirac nodes in graphene that behave
more or less as separate low-energy degrees of freedom,
a pair of Weyl nodes carrying opposite chiralities are in-
herently tied together in a non-local manner through the
“chiral anomaly” mechanism which allows the dissipa-
tionless transfer of charge between them [9]. The subject
has undergone vigorous research lately due to reports of
material predictions, followed immediately by their syn-
thesis and confirmation of their Weyl characters by pho-
toemission experiments and non-local transport measure-
ments. A striking example of success along this line in
recent years is the transition metal monophosphide fam-
ily that includes TaAs, TaP, NbAs, and NbP [10–19].

In light of the rapid maturity of the Weyl semimetal
research, one should ask whether the unusual electronic
transport properties in both the static and dynamic
regimes of the Weyl semimetal can be exploited in high
speed electronics or to provide a new means of reveal-
ing dynamic topological effects [18–20]. It was recently
suggested that exposing a two-dimensional Dirac mate-
rial to a circularly polarized (CP) light could lead to a
novel form of Hall effect due to the effective gap opening
at the Dirac point [21, 22]. A natural question arises as
to what happens when the three-dimensional, linearly
dispersing band of electrons couple to an intense CP
light, as schematically presented in Fig. 1, and whether

a non-trivial Hall effect can be induced. Here we present
a direct consequence of coupling CP light to the Weyl
fermion: the appearance of the anomalous Hall effect
(AHE).

In this work, we show that even when the AHE
is absent due to symmetry reasons in typical Weyl
materials, it must be generally present in all Weyl
systems when coupled to a CP light source. Based on a
low-energy effective Weyl-Floquet Hamiltonian analysis
and symmetry considerations, we discuss the induced
AHE as a generic and readily observable phenomenon
in Weyl semimetals. We further demonstrate this effect
using a concrete microscopic model, and apply our study

kz 

kx 

ky 
Δkz

(I) ~ χW
(I) A2

FIG. 1. (Color online) Schematic figure for a driven Weyl
semimetal. Blue and red circles indicate Weyl nodes with

opposite chiralities χ
(I)
W . The node positions are shifted by

the chiral photons in a chirality-dependent manner and the
shift is proportional to the square of the driving amplitude A.
As a result, even though the total momentum shift along the

driving direction is zero (
∑

I
∆k

(I)
z = 0), the overall Chern

vector shift has a finite z-component (δνz =
∑

I
χ
(I)
W ∆k

(I)
z 6=

0), resulting in a photoinduced anomalous Hall conductivity
σxy (see Eq. (6)).
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to the TaAs family of Weyl semimetals with an estima-
tion of the experimental feasibility. Other interesting
works have addressed the driven three-dimensional Dirac
electrons [23, 24] or gapped systems [25, 26]. However,
neither systems enjoy the unique topological protection
of the Weyl nodes, whose response, under a CP beam,
results in the experimental signature of the AHE as we
explain below.

General tight-binding model analysis: The low-energy
Hamiltonian for a single Weyl node can be parameterized
most generally by a real 3-vector ~α and a 3×3 real matrix
β:

HW (~q) = qiαiσ0 + qiβijσj , (1)

with a canonical 3D linear dispersion EW (~q) = αiqi ±
[
∑

j(
∑

i qiβij)
2]1/2. Einstein summation is assumed in

the momentum qi and the Pauli matrix σj . The chi-
rality of the Weyl node is given by the sign of the de-
terminant of β: χW = sgn[Det(β)]. For a practical
band structure, this 2×2 Weyl Hamiltonian is embed-
ded within a large N -band Hamiltonian as a low-energy
sector. In order to have the most general consideration of
the photoinduced AHE, we therefore consider a N -band
tight-binding Hamiltonian H(~k). The expansion of H(~k)

around a Weyl node at ~kW to first order in ~q = ~k − ~kW
can be put in the block form:

U †H(~kW + ~q)U = Hlin(~q) +O(q2),

Hlin(~q) =

(

HW(~q) qiCi

qiC
†
i D0 + qiDi

)

, (2)

where the matrix D0 gives the (N−2) high-energy states

at ~k = ~kW . Eigenvectors at ~k = ~kW are used to con-
struct the unitary matrix U whose first two columns cor-
responding to the two zero-energy states. In general, the
2 × (N − 2) matrices Ci mix the Weyl bands with high-
energy bands linearly in ~q and should not be ignored.
Without loss of generality, we consider an incident elec-

tromagnetic wave in the z-direction with the vector po-
tential ~A(t) = (Ax cos(ωt), Ay sin(ωt + φ), 0). Following
standard routes [21], the Peierls substitution Hlin(~q) →

Hlin(~q + e ~A(t)) and averaging over one drive cycle leads
to the effective Hamiltonian [27]:

Heff(~q) =

(

HWF(~q) O(q) +O(A2)
O(q) +O(A2) D0 +O(q) +O(A2)

)

, (3)

where the 2× 2 Weyl-Floquet part reads

HWF(~q) = HW(~q)−
e2AxAy cosφ

ω
×

[

ǫijkβxiβyjσk −
i

2
(CxC

†
y − CyC

†
x)
]

. (4)

Higher-order terms O(q2)+O(qA2)+O(A4) are ignored.
Clearly, the photoinduced effect is maximized for a CP

light when cosφ = ±1, and vanishes for a linearly polar-
ized beam.
The CP light has two contributions to the Weyl-

Floquet Hamiltonian in Eq. (4). The first (β2) term
originates entirely from the two-band Weyl Hamiltonian
HW(~q), while the second term proportional to CxC

†
y −

CyC
†
x is due to high-energy band-mixing and must be

kept in the construction of a general Weyl-Floquet ef-
fective model. For later convenience, we re-parameterize
−(i/2)(CxC

†
y −CyC

†
x) = κ0σ0+κiσi with four real num-

bers κi = (−i/4)Tr[σi(CxC
†
y − CyC

†
x)]. Therefore, the

influence of the drive to A2-order on the 2×2 Weyl band
can be summarized as:

HWF(~q) = (qi − δqi)αiσ0 + (qi − δqi)βijσj − δµ · σ0,

δqi =
e2AxAy cosφ

ω
[ǫjklβxjβyk + κl](β

−1)li,

δµ = −δ~q · ~α+
e2AxAy cosφ

ω
κ0. (5)

δqi and δµ represent the shifts of Weyl momenta and
chemical potential, respectively.
The photoinduced Weyl node shift has an immediate

consequence on the electronic transport. According to
Ref. [6], for a Weyl system where the chemical potential
situates at the nodes (i.e. µ = 0), the leading order
change of the anomalous Hall conductivity is governed
by the momentum shifts of every Weyl node as:

δσij =
e2

2πh
ǫijkδνk, where δνk =

∑

I

χ
(I)
W · δq

(I)
k . (6)

Different Weyl nodes are labeled by the superscript I and
δ~ν is the change of the Chern vector [6]. Provided that

the momentum shifts δq
(I)
k among Weyl nodes of different

chiralities χ
(I)
W do not cancel out, one would expect the

AHE induced at the A2-order proportional to the inten-
sity of the incident beam. Note that the photoinduced
self-doping (δµ 6= 0) of the Weyl nodes contributes to
δσij at a higher order O(δµ2) = O(A4) [6] of the drive
intensity, which is negligible. If ~κ(I) = 0, one can show
the z-component of the Chern vector shift to be

δνz =
e2AxAy cosφ

ω

∑

I,i

[Cof(β(I))zi]
2

| det(β(I))|
, (7)

where Cof(β(I))ij is the ij element of the cofactor ma-
trix of β(I). The alternating signs of χ(I) between a node
and an anti-node, or a monopole and an anti-monopole,

are precisely cancelled by the same sign change in δq
(I)
z .

As such, each Weyl node has a positive-definite contri-
bution to δνz . Consequently, a finite Hall conductivity is
induced in the plane perpendicular to the incident beam
and its sign is determined by the photon chirality through
σxy ∝ cosφ.
In practice, the pre-drive chemical potential µ may

not cross the Weyl node as we discussed so far. As long
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as µ before the drive lies in the linearly dispersive regime
near the node, one can show that the our resultant
δσij is unaffected [27]. In fact, using a frequency of
excitation 0 < ω < 2µ for slightly electron-doped Weyl
node would ensure no absorption, as assumed here, and
thus should lead to a more straightforward analysis of
the experimental results regarding the photoinduced
AHE.

Symmetry consideration for multiple Weyl nodes: In
a typical Weyl material, there are multiple sets of Weyl
nodes related by the space group and time-reversal (TR)
symmetries [5, 10]. The parameters ~α, β, and Ci charac-
terizing symmetry-related nodes transform accordingly.
We now derive their transformation rules and discuss how
the nodal shifts δ~q and δµ among the symmetry-related
nodes are correlated.
A pair of Weyl points ~k

(I)
W (with I = 1, 2) related by

some space-group symmetry satisfy R~k
(1)
W = ~k

(2)
W , where

R ∈ O(3) defines the particular symmetry operation.
The parameters quantifying the Weyl nodes transform
according to

α
(2)
i = Rijα

(1)
j , β

(2)
ij = Rikβ

(1)
kj , C

(2)
i = RijC

(1)
j . (8)

As a result, the chiralities of nodes related by a rotation
(Det[R] = +1) are the same, whereas a mirror or inver-
sion operation (Det[R] = −1) produces a sign difference.
On the other hand, nodes related by an anti-unitary sym-
metry involving TR operation satisfy

α
(2)
i =Rijα

(1)
j , β

(2)
ij =Rikβ

(1)
kl ξlj , C

(2)
i =Rij [C

(1)
j ]∗.(9)

Due to the presence of ξ = (ξlj) = diag(1,−1, 1), the
chiralities of these two nodes are related by −Det[R]. For
instance, the TR operation with R = diag(−1,−1,−1)

gives the same chirality for the nodes at ~kW and R~kW =
−~kW.
Some proposed Weyl semimetals break TR symme-

try but preserve inversion (I). Our symmetry analysis

predicts ~α(2) = −~α(1), β(2) = −β(1), κ
(2)
0 = κ

(1)
0 and

~κ(2) = ~κ(1) for a pair of I-related nodes and thus, using
Eq. (5),

δ~q(2) = −δ~q(1), δµ(2) = δµ(1). (I−related) (10)

Since these two nodes must have opposite chiralities
(Det[R] = −1), the product χ(I)δ~q(I) is identical for
both of them. Hence, from Eq. (6), these two nodes
contribute additively to the Hall conductivity. A similar
conclusion holds for an I symmetry breaking Weyl ma-
terials for which TR is a good symmetry. In this case

we find ~α(2) = −~α(1), β(2) = −β(1) · ξ, κ
(2)
0 = −κ

(1)
0 and

~κ(2) = −ξ · ~κ(1) for TR-related nodes, and thus

δ~q(2) = δ~q(1), δµ(2) = −δµ(1). (TR−related) (11)

Since χ(1) = χ(2), Eq. (6) once again predicts a con-
structive contributions from the TR-related nodes.

(b) 

(c) (d) 

kz 

kx 

ky 

(a) 

(3) 

(2) 

(4) 

(1) 

(9) 

(6) (5) 

(11) 

(8) 

(12) 

(7) 

(10) 

x10 

FIG. 2. (Color online) (a) The 12 Weyl nodes in the first
Brillouin zone of the undriven lattice Weyl model studied in
Ref. [28]. (b), (c), and (d) Photoinduced Weyl node shifts
in the presence of a CP drive along the z-direction. Nodes
with positive (negative) chirality are represented by red (blue)
dots, and (I) labels the I-th Weyl node (see Eq. (12)). Open
circles denote the undriven Weyl node positions. Only pro-
jections on the kz = 2π, ky = 2π, and kx = 2π planes are
shown as we increase A2 from 0 to 0.3. The shifts in (b)
are magnified 10 times for a better visualization. Details of
the model calculation can be found in [27]. Parameters used:
(t, ǫ, λ, ω) = (1, 3, 1, 1.1).

Lattice model analysis: To illustrate our findings, we
now proceed to study a concrete lattice model for Weyl
semimetal of inversion symmetry breaking type [28]. The
model is parameterized by the hopping (t), spin-orbit
coupling (λ) and inversion breaking potential (ǫ) [27].
The bare system possesses 12 Weyl nodes labeled as (see
Fig. 2(a)):

~k
(1,2)
W− = (±k0, 0, 2π), ~k

(3,4)
W+ = (0,±k0, 2π),

~k
(5,6)
W+ = (±k0, 2π, 0), ~k

(7,8)
W− = (2π,±k0, 0),

~k
(9,10)
W− = (0, 2π,±k0), ~k

(11,12)
W+ = (2π, 0,±k0), (12)

along with their chiralities as subscripts ± and a charac-
teristic momentum k0 = 2 sin−1[ǫ/(4λ)]. In the presence
of a CP drive, each node undergoes a momentum shift
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given by:

−δ~q
(1,2)
− = δ~q

(3,4)
+ =

e2A2

ω

8η(1− η)λ2

ǫ
ẑ,

δ~q
(5,6)
+ = −δ~q

(7,8)
− =

e2A2

ω

8η(1 + η)λ2

ǫ
ẑ,

−δ~q
(9,10)
− = δ~q

(11,12)
+ =

e2A2

ω

ǫt2

16ηλ2
ẑ, (13)

with η =
√

1− ǫ2/16λ2. The momentum shifts clearly
correlate with the chiralities. The photoinduced self-
dopings are:

−δµ(9) = δµ(10) = δµ(11) = −δµ(12) =
e2A2

ω

ǫ2

16
, (14)

and δµ(1−8) = 0. The anomalous Hall conductivity ob-
tained is (up to A2-order):

δσxy =
e2

2πh

e2A2

ω

(

64ηλ2

ǫ
+

ǫt2

4ηλ2

)

, (15)

which agrees with the expectation of the low-energy anal-
ysis.

So far all our discussion have been done within
the effective Hamiltonian scheme valid for a small
driving amplitude. A more stringent check free
from this assumption is offered by solving the full
Floquet Hamiltonian whose matrix elements are
〈n′|HF |n〉 = Hn−n′ + nωδn,n′I4 with n(n′) denoting the
n(n′)-th Floquet band. The topological character of
the Weyl nodes indeed protects them against the drive,
and only their locations are shifted continuously in a
chirality-dependent way. Figure 2(b-d) demonstrate the
Weyl node shifts obtained from diagonalizing the full
Floquet Hamiltonian as we increase the driving field
strength. It is obvious that nodes with opposite chirality
have opposite shifts in kz , leading to an imbalance of
δνz and eventually, a net anomalous Hall conductivity.
The overall field dependence of the sum of ∆kz weighted
by chiralities is shown in Fig. 3(a), which exhibits the
anticipated A2 increment (we have put e = 1). This
quantity equals to the Chern vector δνz in the small A
regime (Eq. (6)). On the other hand, the resultant self-
doping shows the expected A2 dependence as illustrated
in Figure 3(b). However, it only corresponds to a higher
order effect and does not affect the photoinduced AHE.

Application to TaAs family of Weyl semimetals: TaAs
was recently shown to host 24 Weyl nodes in the Bril-
louin zone [10, 11, 15]. There are two nonequivalent sets
of Weyl points [10] that we denote as: the P-set con-
sisting of 8 nodes at (±kPx ,±kPy , 0) and (±kPy ,±kPx , 0),

and the Q-set with 16 nodes at (±kQx ,±kQy ,±kQz ) and

(±kQy ,±kQx ,±kQz ). The values of kPx , k
P
y , k

Q
x , k

Q
y , k

Q
z for

various TaAs family of materials can be found in Ref. [10].

(a) (b) 

FIG. 3. (Color online) The field dependence for (a) the total
∆kz weighted by chiralities and (b) the absolute self-doping
|δµ| averaged over 12 Weyl nodes for the driven Weyl lattice
model. Same parameters used as in Fig. 2.

Applying the symmetry transformation rules derived be-
fore, we find a simple rule for the node shifts for both
Weyl sets:

δq(P,I)
z = χ(P,I)δqPz , 1 ≤ I ≤ 8,

δq(Q,I)
z = χ(Q,I)δqQz , 1 ≤ I ≤ 16, (16)

where δq
P (Q)
z ∝ A2 is the same for all 8(16) symmetry-

related nodes. The z-direction momentum shift faithfully
follows the chirality χ(I) of each Weyl node, whereas the
same is not true for the shifts in the xy-plane. Therefore,
the overall photoinduced AHE for TaAs family is:

σxy =
e2

2πh

(

8× δqP + 16× δqQ
)

. (17)

Experimental Realization: To guide future exper-
imental efforts to observe these effects, we discuss
the conditions needed and likelihood of success. In the
supplemental we detail our calculations of the magnitude
of the Hall voltage [27], where we assume the use of a
CW CO2 laser, with a roughly constant illumination
across the contacts, spaced ≈ 100 µm apart. Using
established values for the Fermi velocity [13, 16, 20],
reflectance, optical [29] and DC conductivities [18], we
find a 100 nm thick film [30] of TaAs would produce
a Hall signal ≈ 130 nV at room temperature, with a
DC current of 1A and 1W laser power. We note that
the small penetration depth requires the use of thinner
samples to ensure most of the current is modulated by
the light (the induced voltage is inversely proportional
to the square of the thickness). While such signals
should be straight forward to detect, even higher values
may be possible through the use of pulsed lasers with
higher peak electric fields, with the Hall signal detected
through Faraday rotation measurements.

Conclusion: An assortment of analysis based on Flo-
quet theory is carried out on models of Weyl semimetals
to argue that the AHE is induced generically by apply-
ing an AC electromagnetic field of a definite chirality,
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in the plane orthogonal to the incident beam. This pho-
toinduced AHE originates from the remarkable monopole
nature of Weyl nodes. The induced Hall conductivity
scales linearly and continuously with the field intensity.
The nodal shift itself may be observable by the pump-
probe ARPES, while the photoinduced AHE can be de-
tected via DC transport or Faraday rotation experiment
on films. Conceivably, the AC-field-driven AHE may ex-
ist in other materials possessing non-trivial band topol-
ogy such as ferromagnetic metals [31].
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