
This is the accepted manuscript made available via CHORUS. The article has been
published as:

SU(3) Quantum Hall Ferromagnetism in SnTe
Xiao Li (李潇), Fan Zhang, and A. H. MacDonald

Phys. Rev. Lett. 116, 026803 — Published 15 January 2016
DOI: 10.1103/PhysRevLett.116.026803

http://dx.doi.org/10.1103/PhysRevLett.116.026803


SU(3) Quantum Hall Ferromagnetism in SnTe

Xiao Li,1, 2 Fan Zhang,3, ∗ and A. H. MacDonald2

1Condensed Matter Theory Center and Joint Quantum Institute,
University of Maryland, College Park, Maryland 20742, USA

2Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
3Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, USA

The (111) surface of SnTe hosts one isotropic Γ̄-centered and three degenerate anisotropic M̄ -
centered Dirac surface states. We predict that a nematic phase with spontaneously broken C3
symmetry will occur in the presence of a perpendicular magnetic field when the N = 0 M̄ Landau
levels are 1/3 or 2/3 filled. The nematic state phase boundary is controlled by a competition
between intravalley Coulomb interactions that favor a valley-polarized state, and weaker intervalley
scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field
alters the phase diagram by lifting the three-fold M̄ Landau level degeneracy, yielding a ground
state energy with 2π/3 periodicity as a function of Zeeman-field orientation angle.

Introduction.—Tin telluride (SnTe) is now attracting
great attention as the first topological insulator (TI) pro-
tected purely by crystalline symmetry. Although its
electronic band structure has been understood [1] for
decades, the physical consequences of its band inversion
have only recently been fully appreciated [2]. SnTe has a
rocksalt crystal structure with two inter-penetrating face-
centered cubic lattices, and bulk bands that are inverted
at the four Brillouin-zone boundary L points. Its mir-
ror Chern number becomes nontrivial in mirror-invariant
planes that each contains a pair of L points. Based on
this property, Dirac surface states on selected surfaces
respecting mirror symmetries were first predicted [2] and
later observed [3–5]. The (111) surface of SnTe [6–13]
respects three mirror symmetries, and each protects an
anisotropic gapless Dirac surface state at M̄ and a part-
ner isotropic state at Γ̄ in the surface Brillouin zone, as
sketched in Fig. 1(a).

In crystalline topological insulators the top and bot-
tom surfaces of thin films can be electrically isolated [8]
by breaking mirror symmetries on the side surfaces while
leaving them time-reversal-invariant. This behavior con-
trasts with the case of strong TI thin films for which it
is impossible to study single surface electrical properties
because sidewalls can be gapped only by breaking time-
reversal symmetry and generating Hall currents. The
(111) surface of SnTe therefore hosts a unique and rel-
atively unexplored isolated two-dimensional electron gas
(2DEG) system in which the interplay between topolog-
ical surface properties, valleytronics, and many-body ef-
fects is likely to yield unexpected phenomena.

The integer quantum Hall (QH) effect is a hallmark
of any 2DEG system. When a 2DEG has Landau-
level (LL) degeneracies due to spin, valley, and/or layer
degrees of freedom [14–16], the interplay between Lan-
dau quantization and electron-electron interactions often
leads to ground states in which symmetries associated
with the aforementioned degrees of freedom are sponta-
neously broken. Examples of broken symmetry states of
this type, often referred to as QH ferromagnets, arise in
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FIG. 1. (a) Typical equal-energy contours for gapless Dirac
states on the (111) surface of SnTe. The three mirror invari-
ance lines are indicated by dotted lines. (b) and (c) Single-
particle LL structures of (a). The energy difference between
Γ̄ and M̄ Dirac points is 30 meV in (b) and −20 meV in (c).
Brown and blue lines represent the non-degenerate Γ̄ LLs and
the three-fold degenerate M̄ LLs, respectively. The integer la-
bels in (b) and (c) give LL filling factors in spectral gaps.

GaAs and AlAs quantum wells [17, 18], single and mul-
tilayer graphene sheets [19–21], and on the surfaces of
silicon [22, 23] and bismuth [24, 25]. In all instances of
QH ferromagnetism studied to date, however, the nonin-
teracting LL degeneracy N has always been even. Thus
one may wonder whether QH ferromagnetism with oddN
exists in some material, and how in this case the ground
state breaks Hamiltonian symmetries.

Here we show that the (111) surface of SnTe provides a
platform to explore SU(3) QH ferromagnetism. As illus-
trated in Fig. 1, the four Dirac cones on the (111) surface
give rise to four LL sequences. The three M̄ LL sequences
are degenerate and related by a C3 rotational symmetry.
However, the Γ̄-M̄ LL energy difference is not restricted
by any symmetry and can be tuned [11]. Thus, there will
be field-dependent LL crossings between different groups
of LLs. We focus here on the case in which the N = 0
triplet is at the Fermi energy, well separated from all Γ̄
LLs, and 1/3 or 2/3 filled to yield an integer total filling
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factor. This triplet has an exact SU(3) flavor symmetry
in the absence of interactions and Zeeman fields, which
is a consequence of the C3 symmetry of the crystal and
analogous to the SU(3) flavor symmetry of the quark
model and the Eightfold Way. We find that when only
the valley-conserving Coulomb interactions are retained
in the theory, valley symmetry is spontaneously broken
to create a nematic state [26] in which only one valley
is occupied. When the weaker valley-exchange scatter-
ing processes are retained, a broken translational sym-
metry state with coherence among three valleys appears
beyond a critical magnetic field strength. An in-plane
Zeeman field couples to the nematic order parameter and
influences the competition between broken rotational and
translational symmetry states.

Surface state LLs.—The SnTe (111) Dirac surface
states are described by the k · p Hamiltonians [8]:

HΓ̄ = h̄v(kxsy − kysx), HM̄λ
= h̄vxk

(λ)
x sy − vk(λ)

y sx, (1)

where v = 4.40 × 105 m/s and vx = 2.55 × 105 m/s [11]
are surface Fermi velocities, λ = 1, 2, 3 labels the three
inequivalent M̄ valleys, and s is a surface Dirac pseu-
dospin. Microscopically the pseudospins [8, 27] are
valley-dependent linear combinations of spin and orbital
operators that transform like spin under time reversal,

spatial inversion, and mirror reflection. k
(λ)
x and k

(λ)
y

are explicitly defined in Fig. 1(a) for the M̄1 valley; lo-
cal momentum-space coordinates in other valleys are ob-
tained by appropriate C3 rotations.

In the presence of a uniform perpendicular magnetic
field, the 2D kinetic momenta h̄k in Eq. (1) are re-
placed by π = h̄k + eA, where A = (0,−B⊥x). The
Γ̄ LL energies are EN,±(Γ̄)=±

√
2h̄v2NeB⊥, reminiscent

of the massless Dirac fermion LLs in graphene. Be-
cause the M̄ surface states have anisotropic dispersions
with valley-dependent orientations, we define valley-
dependent raising operators a†λ=(`/

√
2h̄)(αλπx− iβλπy),

where `=
√
h̄/eB⊥ is the magnetic length, αλ=η cos θλ +

iη−1 sin θλ, βλ=η−1 cos θλ + iη sin θλ, η=
√
vx/v, and

θλ = 2(λ− 1)π/3. With these definitions

HM̄λ
=

√
2vvxh̄

`

(
0 −ia†λ
iaλ 0

)
, (2)

so that the M̄ LL energies and wavefunctions are
EN,±(M̄λ)=±

√
2h̄vxvNeB⊥, and

ψ0λ =

(
φ0λ

0

)
, ψN>0,λ,± =

1√
2

(
φNλ

± α∗
λ

|αλ|φN−1,λ

)
, (3)

where

φNλ = A−1
Nλe

−αλβ∗
λξ

2
λ/2HN (ξλ). (4)

Here ANλ=
(
2NN !

√
π|αλ|`

) 1
2 is a normalization factor,

ξλ=(x − ky`2)/(|αλ|`), and HN (ξ) is the Hermite poly-

nomial. Also note that aφN=−iα∗/|α|
√
NφN−1 and

aφ0=0. In Fig. 1 we plot LL spectra as a function of
B⊥ for cases with the Γ̄ Dirac point above and below
the M̄ Dirac points. All the Γ̄ LLs are non-degenerate,
whereas all the M̄ LLs are threefold degenerate because
of the C3 symmetry.

QH ferromagnetism of N = 0 triplet.—We focus here
on the case in which the N = 0 LL triplet is 1/3 or 2/3
filled, and ask whether Hamiltonian symmetries are spon-
taneously broken and whether broken symmetries give
rise to charged excitation gaps which would yield an in-
teger QH effect. Because Coulomb interaction matrix el-
ements are sensitive to the valley-dependent orientations
of the anisotropic cyclotron orbits, the Hamiltonian is
not invariant under rotations in valley space. However,
the small size of the momentum-space cyclotron orbits
relative to their separation implies that the number of
electrons in each pocket is conserved; the only allowed
large-momentum transfer processes simply exchange elec-
trons between valleys. Broken symmetry ground states
are either Ising-like states in which the three symmetry
equivalent valleys are occupied by different numbers of
electrons, or XY-like states in which coherence is spon-
taneously established among the valleys. The Ising-like
state is a nematic [26], which lowers rotational symme-
try, while the XY-like state is a commensurate charge-
density-wave state which breaks the crystal translational
symmetry. Interesting new physics is most likely to be
experimentally accessible when the N = 0 triplet is par-
tially filled because of the large gap separating N = 0 and
N 6= 0 LLs. After projecting to the N = 0 triplet, states
at 1/3 and 2/3 fillings are related by particle-hole sym-
metry within the triplet, allowing us to focus on the 1/3
case. We neglect the possibility of an accidental degen-
eracy between the N=0 M̄ triplet and a Γ̄ LL.

We employ the unrestricted Hartree-Fock (HF) ap-
proximation [30] at the integer total filling factors of in-
terest, and minimize the energy of single Slater determi-
nant trial wavefunctions by solving self-consistent field
equations with 3×3 mean-field Hamiltonians of the form:

HHF
λσ = E0δλσ + Y λσ0 ∆σλ(1− δλσ)

−Xλσ
0 ∆σλ −

∑
τ 6=λ

Zλτ0 ∆ττδλσ, (5)

where E0 is the single-particle LL energy, and ∆σλ =
〈c†σcλ〉 is the triplet density matrix. Xλσ

0 , Y λσ0 , and Zλτ0

are respectively intravalley exchange, intervalley Hartree,
and intervalley exchange integrals. We use an envelope-
function approximation for valley-conserving scattering
processes, which are enhanced by the long-range tail of
the Coulomb interactions and therefore dominant, and
approximate intervalley processes using a phenomeno-
logical interaction constant U ∼ 2πe2/εK where K is
a primitive reciprocal lattice vector. It follows that the
Hartree integral is Y λσ0 = (2π`2)−1UFλσ00 (0)Fσλ00 (0), and
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that the exchange integrals are

Xλσ
0 =

∫
d2k

(2π)2

2πe2

εk
Fλλ00 (k)Fσσ00 (−k)eikxky`

2Wλσ
X , (6)

Zλσ0 = U

∫
d2k

(2π)2
Fλσ00 (k)Fσλ00 (−k)eikxky`

2Wλσ
Z , (7)

where ε = (εSnTe+1)/2 ∼ 20 [29] is the effective dielectric
constant, and Fλσ00 (k) is a form factor that accounts for
the system’s valley-dependent cyclotron-orbit shape:

Fλσ00 (k) =

√
2√

|αλ||ασ|(γλ + γ∗σ)
exp

[
(k2
x + γλγ

∗
σk

2
y)`2

−2(γλ + γ∗σ)

]
.(8)

In the above integrals Wλσ
X = 1 − wλλ − wσσ and

Wλσ
Z = 1 − wλσ − wσλ, with wλσ = γ∗σ/(γλ + γ∗σ) and

γλ = βλ/αλ. If the surface states were isotropic (i.e.,
v = vx and γλ = 1), Fλσ00 (k) would reduce to the circu-
lar cyclotron orbit form factor exp(−k2`2/4) [30]. The
corrections in Eq. (8) account for the anisotropy of the
triplet cyclotron-orbits, and for the 2π/3 differences in
anisotropy orientation illustrated in Fig. 1, which play
an essential role in the interaction physics. Because of
the C3 symmetry, the intravalley exchange integral ma-
trix Xλσ

0 only has two inequivalent elements, stronger
exchange integrals for electrons in the same valley (XS

0 )
on its diagonal and weaker exchange integrals for elec-
trons in different valleys (XD

0 ) for its off-diagonal ele-
ments. Because we take the valley-exchange scattering
to be short-ranged, the intervalley integrals have only
off-diagonal matrix elements all of which have the same
value (Y0 and Z0).

The broken symmetry ground state minimizes the to-
tal energy with respect to the five parameters that char-
acterize the valley spinor, (r1e

iϕ1 , r2e
iϕ2 , r3)T. Up to a

spinor-independent constant, the energy per electron is

E = 2[(XS
0 −XD

0 )−(Z0−Y0)] (r2
1r

2
2 + r2

2r
2
3 + r2

3r
2
1). (9)

The energy of the 1/3-filling ground state is indepen-
dent of ϕ1 and ϕ2 because of separate particle num-
ber conservation in each valley. The spinor-dependent
factor in Eq. (9) reaches its minimum value 0 when
the spinor is a single-valley state (r1, r2, r3) = (1, 0, 0),
(0, 1, 0), or (0, 0, 1) and its maximum value 1/3 when
the ground state is an equal-weight three-valley state,
(r1, r2, r3) = (1, 1, 1)/

√
3.

Exchange energies are always stronger between orbitals
that are more similar. Accordingly, the exchange inte-
grals between electrons in the same valley are stronger
than those between electrons in different valleys (XS

0 >
XD

0 >0) because of the difference in cyclotron orbit ori-
entations. It follows that the ground state is completely
valley polarized unless Valley exchange interactions plays
a role. LL interaction physics in SnTe surface 2DEGs
therefore contrasts strongly with the case of graphene
2DEGs which has identical isotropic Dirac cones in two
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FIG. 2. (a) In-plane Zeeman energies mλ in units of√
2η2gµBB‖/9 as a function of B‖ orientation. (b) Phase

diagram for the state at 1/3 filling of the N = 0 LL triplet
for εgB‖ = 300 T and U = 0.85 eV·nm2. The red dot denotes
the critical field Bc⊥ at which a first-order transition occurs
between a valley-polarized and a three valley symmetric state
occurs at B‖ = 0. The solid blue lines are first-order phase
boundaries between valley polarized states, and the dashed
red lines are continuous transition boundaries between states
with coherence between different numbers of valleys. The
phases labeled by M̄i, M̄ij , and M̄123 have a full LL spinor
that is a coherent superposition of components involving one,
two, and three valleys, respectively.

different valleys, implying that XS
0 =XD

0 . Broken valley
symmetry states at ν = ±1 in graphene [31–34] there-
fore have Heisenberg character when valley-exchange pro-
cesses are neglected.

For the relatively modest anisotropy parameter η ∼
0.75 of SnTe we find that the difference between the same-
valley and different-valley exchange energies is small,
XS

0 −XD
0 = 0.0541 e2/(ε`) ∼ √B⊥. The valley-exchange

scattering processes are short-ranged and momentum-
independent, under which Z0 − Y0 is positive and scales
as U/`2 ∼ B⊥. This allows the weak valley-exchange
scattering to play a role at stronger fields, favoring a
ground state which has coherence between all three val-
leys, and is therefore a charge-density-wave state with
broken translational symmetry. For U = 2πe2/εK =
0.85 eV·nm2, a first-order quantum phase transition
between nematic valley-polarized and valley-coherent
charge-density-wave states occurs at Bc⊥ ' 11 T. This
behavior constrasts with graphene [31–34] and monolayer
MoS2 [35], where there is no such competition, and the
same mechanism induces a charge-density-wave ground
state at all field strengths at filling factors ν=±1.

Zeeman field effects.—We have so far neglected Zee-
man coupling, which greatly enriches the interaction in-
duced integer QH effect of SnTe. We write the total
magnetic field as (B‖ cosφ, B‖ sinφ, B⊥), using the co-
ordinate frame defined in Fig. 1(a) for the crucial in-
plane-field orientation φ. For general φ the Zeeman
field breaks mirror symmetries and couples to the order
parameter by producing valley-dependent single-particle
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energies [8, 28], i.e., E0 → E0 +mλ in Eq. (5) with

mλ =
1

2
αgµB

[
2
√

2

3
B‖ cos(φ− θλ) +

1

3
B⊥

]
, (10)

where g is an electron g-factor, µB is the Bohr magneton,
and α=η2/3 is the real spin weight of the surface pseu-
dospin [8, 28]. The perpendicular field B⊥ does not break
the C3 symmetry and contributes only an irrelevant [36]
valley-independent energy shift of the N = 0 triplet. In
contrast, the in-plane field B‖ breaks C3 symmetry and
lifts the N=0 triplet degeneracy. It follows that in-plane
fields can yield an integer QH effect at 1/3 and 2/3 filling
of the N = 0 triplet even in the absence of interactions,
as illustrated in Fig. 2(a). When B̂‖ is parallel (anti-
parallel) to Γ̄-M̄ , the triplet level degeneracy is reduced
to a two-fold degeneracy at 1/3 (2/3) filling. When B̂‖ is
(anti)parallel to Γ̄-K̄, the single-particle gaps at 1/3 and
2/3 filling are non-zero and identical.

Valley dependent Zeeman coupling competes with
electron-electron interactions, and greatly enriches the
phase diagram by adding δE→∑λmλr

2
λ to Eq. (9). The

phase diagram at εgB‖=300 T is illustrated in Fig. 2(b).
For B⊥ < Bc⊥ = (2.81 eV·nm2/U)2, interactions prefer
a valley-polarized state and φ simply selects which val-
ley is occupied. First-order phase transitions occur at
φ = θλ. When Zeeman coupling to a parallel field is
included, the abrupt transition from valley-polarized to
three-valley coherent states is interrupted by a region in
which φ-dependent two-valley coherent states are stable.
The stability range of the two-valley coherent state is
widest when φ = θλ. Finally, when B⊥ is further in-
creased, three-valley coherent states finally emerge, but
with φ-dependent and unequal valley populations. Val-
ley coherence can therefore be modified and continuously
tuned by the in-plane Zeeman field.

The shape of the phase diagram in Fig. 2(b) is only
weakly dependent on the value of εgB‖. The three first-
order transition lines and Bc⊥ are independent of changes
in εgB‖. A larger value of εgB‖ expands the areas with
two-valley coherent states to larger B⊥. Stronger short
range interactions shift Bc⊥ to smaller values because in-
tervalley interactions increase in importance. On the
other hand, larger surface state anisotropy would increase
the critical perpendicular field Bc⊥.

Discussion.—We have shown that because of valley-
dependent anisotropic cyclotron orbits, intravalley
electron-electron interactions in SnTe can reduce rota-
tional symmetries and lift the three-fold degeneracy of
the M̄ valley N = 0 LLs. The physics which drives this
broken symmetry is similar to that [37, 38] responsible for
valley polarized nematic states in parabolic spinful band
systems with an even number of valleys. The triplet case
discussed here is distinguished by its SU(3) order pa-
rameter space, and by the way Zeeman interactions with
parallel fields couple to the order parameter. Zeeman

interactions play a key role because parallel fields break
the mirror and C3 symmetries that protect and relate
the three M̄ valley surface Dirac states. We also pre-
dict that intervalley interactions will become important
at sufficiently strong fields and drive a transition from a
valley-polarized nematic state to a commensurate charge-
density-wave state with intervalley coherence.

Although we use a mean-field theory, many of our
predictions are exact when Landau level mixing is ne-
glected [39]. Specifically, the phase boundaries between
the valley-polarized states (favored by in-plane Zeeman
fields) and those between the valley-polarized and two-
valley coherent states are likely to be exact [39], because
the states whose energies we are comparing are the only
states in the relevant Hilbert space with the same quan-
tum numbers. However, the phase boundaries between
the two-valley coherent states, which are not exact single-
Slater determinant states, and the three-valley coherent
region are likely to be modified by quantum fluctuations.

The same physics also occurs in PbxSn1−xSe, which
may have higher mobilities than SnTe [4, 40]. The
first step experimentally would be to verify our pre-
dicted LL structure using field-angle dependent magne-
toresistance or magnetic torque magnetometry [24, 25].
The energies of Γ̄ and M̄ valley LLs are

√
Nv2B⊥ and√

NvvxB⊥, respectively. Their crossings, illustrated in
Fig. 1, should lead to pronounced peaks in longitudi-
nal magnetoresistance. Note that the LL crossing fields
may be controllable by varying the surface potential [11],
which tunes the energy difference between the Γ̄ and M̄
Dirac points. An in-plane Zeeman field splits the SU(3)-
invariant triplets, with 2π/3 periodicity as a function of
Zeeman-field orientation. Since Shubnikov-de Haas os-
cillations have recently been observed on the (001) sur-
face of PbxSn1−xSe [40], we expect future progress to be
rapid. The phase diagram Fig. 2(b) is expected to be ob-
servable only in low-disorder samples, since the transport
activation gaps associated with broken symmetry states
are of the order of e2/(ε`) ∼ 56

√
B⊥ [T]/ε meV. The col-

lective modes [41] of valley coherent states are expected
to be gapless, while those of valley-polarized states are
expected to be gapped.
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