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The critical point of a topological phase transition is described by a conformal field theory, where
finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-
size scaling away from criticality and find a scaling function, which discriminates between phases with
different topological indexes. This function appears to be universal for all five Altland-Zirnbauer
symmetry classes with non-trivial topology in one spatial dimension. We obtain an analytic form
of the scaling function and compare it with numerical results.

Since the introduction of topological order in con-
densed matter physics, the field of topological insu-
lators received constantly growing attention[1–4]. Al-
though non-interacting topological phases were fully
classified[5–7] and a plethora of topological edge states
characterized[2, 4, 8–11], little attention was given so far
to finite-size effects around the topological transition. An
important question is whether finite-size scaling is capa-
ble to distinguish between topological indexes and may
be used as an indicator of the topological nature of the
transition. One may also ask whether such scaling is
universal or specific to a particular symmetry class, e.g.
sensitive to Z vs. Z2 topological index.

In this paper we discuss the finite-size scaling of the
ground state energy across topological phase transitions
in 1 + 1 dimensional models. The critical point in
such models is described by a conformal field theory[12]
(CFT). The finite-size, N , scaling of the ground state
energy E(N, 0) for an open system at criticality is
known[13, 14] to be

E(N, 0) = N ε̄(0) + b(0)− c

N

π

24
+O(N−2), (1)

where ε̄(0) is the average bulk energy per particle, b(0)
the size-independent boundary term and argument (0)
specifies the exact critical point. Here length is measured
in units of lattice spacing and energy in units of the Fermi
velocity over the lattice spacing. The 1/N term appears
to be universal and depends only on c – the central charge
of the Virasoro algebra[12].

A relevant perturbation drives the system away from
criticality, creating a spectral gap 2m and a correspond-
ing correlation length ξ = 1/m. Our main observation is
that the CFT expansion (1) may be generalized as

E(N,m) = N ε̄(m) + b(m)− c

N
f(Nm) +O(N−2) , (2)

where in the double scaling limit[15]: N → ∞ and
m → 0, while w = Nm = N/ξ = const, the func-
tion f(w), Fig. 1, is universal for all 5 Altland-Zirnbauer
symmetry classes with non-trivial topology in 1 spatial
dimension (AIII, BDI, DIII, D, CII)[5, 6]. Hereafter we
identify m > 0 with the topological and m < 0 with

FIG. 1: (Color online) Numerical results for f(w), where
w = Nm and N = 100 for 5 topologically non-trivial
symmetry classes in one spatial dimension. (a) The case
for open boundary conditions which is sensitive to
topology, the solid line is the scaling function given by
Eq. (9). (b) In periodic boundary conditions the results
are independent of the topological index and the scaling
function Eq. (10) is symmetric. There is a difference
between even (f(w) negative) and odd (f(w) positive)
number of sites N = 100, 101.
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non-topological, or lesser topological index, side of the
transition. Most notably, the scaling function for open
boundary conditions exhibits markedly distinct behavior
on the two sides of the topological transition, while for
periodic boundary conditions it is symmetric[16]. Cu-
riously, a similar scaling function for the entanglement
entropy [17] appears to be symmetric across the topo-
logical transition[18], and it is only the N -independent
boundary term which is sensitive to the topological in-
dex.

One may worry that in the double scaling limit depen-
dence on m of the bulk and boundary terms should not
be kept. This is not quite so, because of their singular
dependence on the gap. As we explain below

ε̄(m) = ε̄(0)− c

2π

[
m2 +O(m4)

]
lnα|m| ; (3)

b(m) = b(0) +
c

π

[
m+O(m2)

]
lnαb|m|, (4)

where α and αb are non-universal constants. As a re-
sult the double scaling limit (2) for the energy may be
equivalently written as

E(N,w) = N ε̄(0)+b(0)+
c logN

2πN

(
2w − w2

)
− c

N
f2(w) ,

(5)
where f2(w) = f(w) + 1

2π (2w logαb|w| − w2 logα|w|) in-
corporates non-universal terms ∼ w and ∼ w2. Since
these latter may be easily subtracted both numerically
and analytically, it is preferable to use the expansion (2)
with the fully universal function f(w).
Universality of the scaling function: Before discussing

analytic properties of the scaling function f(w) let us fo-
cus on our numerical setup and demonstrate the univer-
sal behavior for different symmetry classes. We consider
models for all five Altland-Zirnbauer symmetry classes
which are topologically non-trivial in one dimension[6].
To extract the scaling function we use Eq. (2). E(N,m)
is the sum of all eigenvalues which are obtained by numer-
ical diagonalization. The average energy ε̄ is the integral
over the entire Brillouin zone of the dispersion relation
for all filled bands, which are calculated from the k-space
representation of the Hamiltonian. The boundary term
may be also calculated analytically (see below) or alter-
natively approximated by b(m) ≈ E(N,m) −Nε̄(m) for
some large N , say N = 1000. We have checked that the
two ways are in excellent agreement.

In AIII symmetry class we use the standard Su-
Schrieffer-Heeger (SSH) tight-binding Hamiltonian [19,
20]:

HAIII =

N∑
j=1

t1c
†
A,jcB,j +

N−1∑
j=1

t2c
†
B,jcA,j+1 + h.c. (6)

Here we choose the gauge for the momentum to have the
gap closing at k = 0, where the dispersion relation reads
ε(k) = ±

√
t21 + t22 − 2t1t2 cos k. For t1 6= t2 neighboring

FIG. 2: (Color online) SSH model (AIII symmetry class):
(a) Visualization of the phase shift across the transition.
For a fixed w = Nm, a state exists with energy ε±(k) if
w = kN cot(kN), Eq. (7). In both limits w → ±∞ there
are states at kN = nπ, however one pair of states collides
at w = 1 (blue) and obtains imaginary k, shown as dashed
line. (b) Energy spectrum near the gap for a N = 50 SSH
Hamiltonian (black), with a pair of evolving edge states
(blue). The edge state crosses the bulk Dirac cone (thin
red) at w = 1, where the momentum becomes imaginary.
(c) Comparison of numerical results for SSH Hamiltonians
with the scaling function (9) for system sizes
N = 50, 100, 200 and three transitions in a 2-chain SSH
model with topological indexes Z = 0→ 1, 1→ 2, 0→ 2.

sites form dimers, where for t1 > t2 all sites are part of
a dimer, but for t1 < t2 the two sites at the ends of the
chain are unpaired (from now on m = t2−t1). Thus there
are two distinct phases with topological index Z = 0
or Z = 1 respectively. In the case of n similar parallel
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chains the topological index takes values Z = {0, 1, ..., n}.
Fig. 2c shows results for the scaling function at different
system sizes, as well as three different transitions (Z =
0 → 1, 0 → 2, 1 → 2) in a system with two parallel
chains. The results scale with w as the only parameter,
and all transitions agree with the analytic result, Eqs. (2),
(9). The other symmetry classes are discussed in the
supplemental material[21]. Here we only show numerical
results in Fig. 1, which confirm universality across all five
topological classes.

Analytic properties: Universality of f(w) function is
related to the fact that, similarly to the CFT result (1),
it is fully determined by the vicinity of the critical point.
One may thus approximate a near-critical system by the
Dirac Hamiltonian, e.g. in AIII symmetry class, H =
mσ1 + i∂xσ2, where the Pauli matrices act in the space
of A/B sublattices, cf. Eq. (6). Assuming that outside
of the interval 0 < x < N the mass is very big and, e.g.,
negative one derives the boundary conditions ΨA(0) =
ΨB(N) = 0. The quantized values of k > 0 are given by

cos(kN + δ(k)) = 0; tan δ(k) =
m

k
=

w

kN
. (7)

As a result the spectrum is determined by the condition
w ≡ Nm = kN cot(kN), plotted in Fig. 2a, and is given
by ε±(k) = ±

√
m2 + k2. At w = 1 two of its real so-

lutions collide and switch to purely imaginary ones, cor-
responding to the decaying edge states. Notice that the
non-propagating states do not form at m = 0, as could
be naively expected, but rather at m = 1/N .

Using the argument principle the total groundstate en-
ergy is given by

E(N,m) =
1

2

∮
dk

2πi
ε−(k) ∂k ln [cos(Nk + δ(k))] , (8)

for the dispersion relation ε−(k) of the filled lower band.
The contour runs in the complex k-plane encircling all
solutions of Eq. (7). The bulk and boundary terms are
given by Nε̄+ b =

∫
(dk/2π)ε−(k)[N + ∂kδ(k)], where

N + ∂kδ(k) are bulk and boundary parts of the continu-
ous density of states. To find the scaling function f(w)
one subtracts Nε̄ + b from Eq. (8), deforms the integra-
tion contour to run along the branch cut of

√
m2 + k2

and rescales the integration variable as z = ikN . As a
result, one finds

f(w) = −
∫ ∞
|w|

dz

π

√
z2 − w2 ∂z ln

[
1 + e−2z−2δw(z)

]
,

(9)
where δw(z) = − tanh−1(w/z). (For more detail on the
derivation see the supplemental material[21].) This ex-
pression is plotted in Figs. 1a, 2c as a full line and is in
good agreement with the numerical data.

Before discussing analytic properties of this scaling
function let us add a couple of remarks: (i) though
the derivation was given for the model in symmetry

class AIII, the same logic works for the other symmetry
classes. One needs to subtract proper model-dependent
bulk and boundary parts, but the scaling term is only de-
termined by the vicinity of the Dirac point and remains
unchanged; (ii) a similar derivation may be applied to
the case of periodic boundary conditions. In the gauge
chosen after equation (6) periodic boundary conditions
give Ψ(N) = (−1)NΨ(0). In this case the quantization
condition (7) changes to cos(kN) = (−1)N . After sub-
tracting the bulk energy (there is no boundary term in
this case) and following the same steps one arrives at a
similar scaling function:

f(w) = −2

∫ ∞
|w|

dz

π

√
z2 − w2 ∂z ln

[
1− (−1)Ne−z

]
= −2w

π

∞∑
j=1

K1(jw)

j
(−1)jN , (10)

where K1(x) is the modified Bessel function. This func-
tion f(w) is manifestly symmetric across the topological
phase transition, as it must be for periodic boundary con-
ditions. However even in the scaling limit N → ∞ it is
dependent on parity of N , see also Fig. 1b. The differ-
ence may be attributed to the level crossing at the gap
closing point k = 0 and w = 0 for even N , explaining
∼ |w| non-analytic behavior of the scaling function. For
odd N , all levels undergo avoided crossings and the scal-
ing function is free from such non-analyticity. The CFT
result[13, 14] predicts f(0) = π/6, which agrees with the
case for odd N , while for even N we obtain f(0) = −π/3.

Returning to a system with open boundary conditions,
at small |w| � 1 Eq. (9) leads to:

f(w) ≈ π

24
+

1

2π

(
−2w + w2

)
ln |w|+ . . . . (11)

The first term here is in agreement with the CFT limit
(1). The subsequent terms ensure that f2(w) function,
defined after Eq. (5), is analytic. Indeed, at any finite N
the ground state energy E(N,m) and all its derivatives
must be non-singular at m = 0. To derive the second
term in Eq. (11) one may employ monodromy transfor-
mation, which rotates complex w in a small circle around
zero[25]. Upon such transformation the right hand side
of Eq. (9) picks up a contribution given by a closed con-
tour integral around a branch cut −|w| < z < |w| times
the number of revolutions. Calculation of such an in-
tegral leads to i(−2w + w2), implying that f(w) must
have logarithmic branch cut terminating at w = 0 with
the discontinuity across it given by this value. Hence
Eq. (11). We note in passing that in addition to such
logarithmic branch cut, f(w) function has an infinite se-
quence of square root branch cuts along the imaginary
axis of w.

At large argument |w| � 1, i.e. N � |ξ|, the finite-size
corrections decay exponentially. Remarkably the rate of
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the decay appears to be sensitive to the topology:

f(w) ≈

{
1

16
√
π
|w|− 1

2 e−2|w| trivial w � −1;

2we−w topological w � 1.
(12)

(In Z symmetry classes, the two lines may be attributed
to Z and Z + 1 topological index.) The fact that on
the topological side the scaling function decays half as
fast as on the trivial side may be associated with the ap-
pearance of the edge states in the middle of the gap and
effectively cutting the gap in half. In fact, the purely
imaginary solution of w = kN cot(kN) at w � 1 gives
the energy of the edge states as ε = ±2we−w/N . This
is identical to the asymptotic of f(w)/N on the topolog-
ical side of the transition, Eq. (12), indicating that the
latter originates solely from the edge state. In the case
of periodic boundary conditions the large w asymptotic
is f(w) = −(−1)N

√
2/π|w|1/2e−|w|, which is different

from both sides of the transition, Eq. (12), in the open
boundary condition case.

Furthermore note that there develops a peak at w =
N/ξ = 1 on the topological side (cf. Fig. 1). At this point
there is a crossover between the regime of the correlation
length being larger than the system size to smaller than
the system size. In other words, here the two edge states
at opposite ends transform from being delocalized and
correlated to localized modes, i.e. the topological tran-
sition happens when m = 1/N . This manifests itself in
Fig. 2 as the point where two momenta become imagi-
nary.

Conclusions and outlook: In conformal field theories
the N−1 term in energy is universal and only depends
on the central charge of the Virasoro algebra[13, 14].
Here we find that in the case of topological phase transi-
tions this term naturally extends into a scaling function,
depending only on the ratio of the system size to the
correlation length. Furthermore this scaling function is
universal for all topologically non-trivial classes of non-
interacting fermions in one spatial dimension. While the
scaling function for energy appears to be sensitive to the
topological nature of the transition, this is by no means
the common situation. For example, the finite-size scal-
ing function of the entanglement entropy away from the
critical point[17], appears to be symmetric across the
topological transition[18] (there is still an asymmetric
size-independent boundary term).

It is natural to ask whether the scaling behavior
changes with interactions, especially for models with cen-
tral charge different from c = 1 and c = 1/2 considered
here. Another direction to explore is relation of the scal-
ing function to the theory of integrable systems[26]. In
particular if it may be expressed in terms of solutions
of Painleve equations, as it happens in e.g. the Ising
model [15]. As mentioned above, the non-analytic con-
tributions to the finite-size scaling near w = 0 are related
to the monodromy, i.e. discontinuity across the branch

cut terminating at w = 0, which happens to be simply
a second order polynomial in w. An open question is if
the full f(w)-function may be recovered from the mon-
odromy data, specified for all of its branch cuts, through
the solution of a Riemann-Hilbert problem[25].
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