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For a massless gas with constant cross section in a homogeneous, isotropically expanding spacetime
we reformulate the relativistic Boltzmann equation as a set of non-linear coupled moment equations.
For a particular initial condition this set can be solved exactly, yielding the first analytical solution of
the Boltzmann equation for an expanding system. The non-equilibrium behavior of this relativistic
gas can be mapped onto that of a homogeneous, static non-relativistic gas of Maxwell molecules.

PACS numbers: 25.75-q,51.10.+y,52.27.Ny,98.80.-k

1. Introduction. The relativistic Boltzmann equation
plays a prominent role in understanding the complex
non-equilibrium dynamics displayed by dilute relativis-
tic gases. It has applications in many areas of physics
including, e.g., theoretical description of the quark-gluon
plasma [1–6], neutrino transport in supernovae [7, 8], and
structure formation in cosmology [9–11]. While analyti-
cal solutions of the Boltzmann equation have been thor-
oughly studied for homogeneous systems [12–14], solu-
tions for an expanding system remain to be found even
in the non-relativistic regime.

In the relativistic regime, progress in this direction was
made recently [15–22] using the Anderson-Witting equa-
tion [23], an approximation of the Boltzmann equation
that relies on the relaxation time approximation [24]. In
this scheme, the nonlinear collision kernel of the Boltz-
mann equation is replaced by a linearized version that
qualitatively describes the relaxation of the system to
equilibrium on a microscopic time scale. These analyses
served to improve our understanding of the domain of ap-
plicability of a number of extended hydrodynamic theo-
ries used in the description of rapidly expanding plasmas
[15–20], with focus on the description of ultrarelativistic
heavy-ion collisions.

However, a complete description of dilute gases can
only be achieved by solving the full Boltzmann equa-
tion. While this can be done numerically, simple yet
physically motivated analytical solutions of the Boltz-
mann equation, if available, can lead to valuable insights
into non-equilibrium phenomena. In this Letter we take
a step in this direction and derive the first analytical so-
lution of the full Boltzmann equation for an expanding
dilute gas. This is done using the method of moments
[6, 25] to calculate the nonlinear collision term of the
relativistic Boltzmann equation for a massless gas with
constant cross section in a homogeneous and isotropically
expanding spacetime. The derived solution describes the
expansion-driven deviation of the particles’ momentum

distribution from local thermal equilibrium as a func-
tion of the system’s expansion rate. We note that the
non-expanding limit of this solution, which describes the
homogeneous relaxation of a relativistic gas towards equi-
librium, is also new.
2. Boltzmann equation. We consider a homogeneous and
isotropically expanding system of massless particles in
a Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-
ric [26, 27] (the most general homogeneous and isotropic
metric in flat space)

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (1)

We note that in this paper we make the further restriction
of zero global curvature. For a gas of massless particles,
the energy density and the pressure are related as ε=3p,
and here the scale factor a(t)> 0 [27] is a free function
that may be fixed by additional physics assumptions.
For the FLRW metric the nonzero Christoffel symbols
are Γi

0j = δij H(t) and Γ0
ij = a(t)ȧ(t) δij , where i, j denote

spatial indices, H(t) ≡ ȧ(t)/a(t) is the Hubble param-
eter, and

√−g = a3(t), with g being the determinant
of the metric in (1). Even though the fluid flow of this
system is locally static, uµ= (1, 0, 0, 0), the expanding
FLRW geometry induces a nonzero fluid expansion rate
θ(t) ≡ ∂µ(

√−g uµ)/
√−g = 3H(t).

The dynamics of the single-particle distribution func-
tion, fk(x), is given by the relativistic Boltzmann equa-
tion in curved space [18, 19, 28–30]

kµ∂µfk + Γλ
µikλk

µ ∂fk
∂ki

= C[f ]. (2)

Since the FLRW geometry is based on the assumptions
of spatial homogeneity and isotropy, fk cannot depend
on spatial position x and must be locally isotropic in
momentum, depending only on u·k= k0 where for mass-
less particles k0 = k/a(t) with k= |k|. We therefore write
fk(x) = fk(t) from here on.
The symmetries of the FLRW metric strongly con-

strain the form of the energy-momentum tensor T µν and
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particle 4-currentNµ of the matter. Due to local momen-
tum isotropy the viscous shear-stress tensor and particle
diffusion current vanish exactly. Further, the bulk vis-
cous pressure is zero for massless particles. Therefore, the
conserved currents always take their equilibrium form,
and the time evolution of the energy and particle den-
sities, ε and n, is fully determined by the conservation
laws

∂tn+ 3nH(t) = 0, ∂tε+ 4εH(t) = 0. (3)

With initial condition a(t0)= 1, they are solved by
n(t)=n(t0)/a

3(t) and ε(t)= ε(t0)/a
4(t).

Even though the conserved currents T µν = εuµuν −
pgµν and Nµ =nuµ take the same form as in local ther-
mal equilibrium, the system itself does not have to be
in equilibrium. In fact, the local momentum distribution
fk(t) is driven away from its local equilibrium form by an
amount proportional to the expansion rate θ(t)= 3H(t)
of the FLRW geometry. However, this process happens
without disturbing the spatial homogeneity and isotropy
of the system and, consequently, there are no out-of-
equilibrium corrections to the conserved currents. A sim-
ilar behavior was found in [21, 22] in the context of the
relaxation time approximation.
The contributions from the Christoffel symbols in

Eq. (2) cancel exactly, and the equation reduces to

k0∂tfk = C[f ]. (4)

Ignoring quantum statistics, the collision term reads

C[f ] = 1

2

∫

k′pp′

Wkk′→pp′ (fpfp′−fkfk′) , (5)

where
∫

k ≡
∫

d3k/
[

(2π)3
√−g k0

]

and Wkk′→pp′ is the
transition rate. To make progress on evaluating (5) we
make the simplifying assumption of isotropic scattering
with energy-independent total cross section σ. Then
Wkk′→pp′ takes the form [28–30]

Wkk′→pp′ = (2π)5
√−g σ s δ4(k+k′−p−p′), (6)

where s=(kµ+k′
µ
)(kµ+k′µ). Thus, the Boltzmann equa-

tion becomes

k0∂tfk =
(2π)5

2

√−g σ

∫

k′pp′

s δ4(k+k′−p−p′)(fpfp′−fkfk′).

(7)
Note that even for the highly symmetric case considered
here the relativistic Boltzmann equation is still a non-
linear integro-differential equation for fk .
3. Moment equations. We proceed to solve the Boltz-
mann equation using the method of moments [6]. Due
to local momentum isotropy, the distribution function fk
can be fully described by scalar moments only [31]:

ρm(t) =

∫

k

(u·k)m+1 fk(t) =

∫

k

(k0)m+1 fk(t) (8)

=
1

2π2

1

am+3(t)

∫

∞

0

dk km+2 fk(t) (m ∈ N0).

The time dependence of the two lowest moments, the
number density n(t)≡ ρ0(t) and the energy density
ε(t)≡ ρ1(t), is given by the conservation laws already
discussed. For a classical gas of massless particles, they
provide the time-dependence of the temperature T and
fugacity λ= exp(µ/T ) (where µ is the chemical poten-
tial) via the matching conditions [6] T = ε/(3n) and
νdλ=nπ2/T 3 where νd is the number of massless degrees
of freedom (including statistical degeneracy factors). In
the following we set νd =1 for simplicity.
From the matching conditions it follows that

T (t)=T (t0)/a(t) and µ(t)=µ(t0)/a(t) such that the
fugacity λ is time-independent. T (t) and λ define
the local equilibrium distribution function f eq

k (t) =
λ exp(−u·k/T (t)) and the equilibrium scalar moments

ρeqm(t) =
(m+2)!

2π2
λTm+3(t). (9)

To express the Boltzmann equation in terms of the scalar
moments ρm we multiply (7) by (u·k)m and integrate over
k. This results in

∂tρm(t) + (3+m)H(t)ρm(t) = C(m)
gain(t)− C(m)

loss (t), (10)

where the gain and loss terms are defined by

C(m)
gain(t) =

(2π)5

2

√−g σ

∫

kk′pp′

s (u·p)mδ4(k+k′−p−p′)fkfk′ ,

C(m)
loss (t) =

(2π)5

2

√−g σ

∫

kk′pp′

s (u·k)mδ4(k+k′−p−p′)fkfk′ .

(11)

Here the gain term was simplified by using the symmetry
of the transition rate under interchange of the incoming
and outgoing momenta. With

√−g

∫

pp′

δ4(k+k′−p−p′) = 1/(2π)5, (12)

the loss term reduces straightforwardly to [6]

C(m)
loss (t) = σρm(t)n(t). (13)

However, the gain term is more involved. One first writes

C(m)
gain(t) =

σ

2

∫

kk′

s fkfk′ Pm, (14)

where the inner kernel is

Pm ≡ (2π)5
√−g

∫

pp′

(u·p)m δ4(k+k′−p−p′). (15)

This quantity is a scalar and can be calculated in
any frame. In the center of momentum frame, the 4-
dimensional delta function can be integrated and the re-
maining angular integrals can be performed analytically
[32]. The final result can be expressed as follows

Pm =
m!

[2a(t)]m

m+1
∑

j odd

(k+k′)m+1−j

(m+1−j)!

|k+k
′|j−1

j!
. (16)
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Plugging this back into (14) and performing some alge-
braic manipulations [32] one obtains

C(m)
gain(t) = 2 (m+2)m!σ

m
∑

j=0

ρj(t)

(j+2)!

ρm−j(t)

(m−j+2)!
. (17)

Using these results in Eq. (10) we derive the following
exact evolution equation for the moments:

∂tρm(t) + [(3+m)H(t) + σn(t)]ρm(t)

= 2 (m+2)m!σ

m
∑

j=0

ρj(t)

(j+2)!

ρm−j(t)

(m−j+2)!
. (18)

This infinite set of coupled nonlinear differential equa-
tions for the scalar moments ρm(t) is equivalent to the
original relativistic integro-differential Boltzmann equa-
tion. For m=0 and m=1 Eq. (18) reduces to Eqs. (3)
for the particle and energy densities. Higher-order mo-
ments are more sensitive to the distribution function
at higher momentum. We can further simplify the
moment equations by introducing the scaled moments
Mm(t)≡ ρm(t)/ρeqm (t) [33] and the scaled time t̂= t/ℓ0
where ℓ0 =1/(σ n(t0)) is the (constant) mean free path
at time t0. This yields the surprisingly simple evolution
equations

a3(t̂ )
∂Mm(t̂)

∂t̂
+Mm(t̂) =

1

m+1

m
∑

j=0

Mj(t̂)Mm−j(t̂). (19)

Equation (19) is the main result of this Letter. While
the nonlinear coupling between different moments was
expected from the nonlinearity of the collision kernel,
the same cannot be said about another key feature of
Eq. (19): it can be solved recursively, i.e. the solution
of the evolution equation for Mn requires only previ-
ously solved moments Mk(t) of lower order k <n. This
property depends on our choice of an energy-independent
cross section; it is essential for being able to solve (19)
analytically.
All information about the expansion appears in the

factor a3(t̂ ) multiplying the time derivative in (19).
Whether or not local equilibrium can be achieved
thus depends on the state of expansion of the sys-
tem. For example, when a(t̂ )∼ t̂ 1/2 the mean free path
ℓ(t̂)= 1/(σn(t̂)) increases faster than the expansion rate,
limt̂→∞

ℓ(t̂)θ(t̂)→∞, and local equilibrium cannot be
reached even at asymptotically large times. Moreover,
if the initial fk(t̂0) is positive definite, Mn(t̂0)> 0, and
Eq. (19) then implies that all moments remain positive
throughout the evolution, translating into positivity for
fk for all momenta at all times.
Equation (19) closely resembles the Bobylev-Krook-

Wu (BKW) equation derived almost four decades ago [12,
13] in a famous study about homogeneous and isotropic
solutions of the non-relativistic Boltzmann equation (for

a review see [14]) for Maxwell molecules. In fact, by

defining the time variable τ =
∫ t̂

t̂0
dt′/a3(t′) to take into

account the expansion [34], our equation (19) for the mo-
ments becomes identical to the BKW equations [13]:

∂τMm(τ) +Mm(τ) =
1

m+1

m
∑

j=0

Mj(τ)Mm−j(τ). (20)

This indicates that even though the underlying symme-
tries of these physical systems are quite different (BKW’s
are based on Galilean invariance with static conditions
while ours are embedded in an expanding system), these
systems are actually equivalent from a dynamical per-
spective and evolve towards equilibrium in a universal
manner. We note that our equations also reduce to
BKW’s when a(t̂)≡ 1, i.e. for a non-expanding metric
(though special relativistic effects are still fully taken into
account).
4. Analytical solution of the moment equations. Given
the close relation of our Eq. (19) with the BKW equation
(20) it is not surprising that it admits an exact analytic
solution of the Krook and Wu type:

Mm(τ) = K(τ)m−1
[

m− (m−1)K(τ)
]

(m ≥ 0), (21)

where K(τ) = 1− 1
4 exp(−τ/6). The time evolution of the

moments is shown in Fig. 1 (a). One sees that low-order
moments equilibrate more quickly than the higher-order
ones that are needed to describe the high-momentum
non-equilibrium tail of the distribution function.
Given the exact form (21) of the moments Mm(τ),

the distribution function can be reconstructed as follows.
One defines the function F(τ, u·k)= (u·k)2 θ(u·k) fk
where u·k= k/a(τ), expands its Fourier transform with
respect to k in terms of the moments Mm(τ), and then
transforms it back. This yields the exact result [32]

fk(τ) = λ exp

(

− u·k
K(τ)T (τ)

)

(22)

×
[

4K(τ)−3

K4(τ)
+

u·k
T (τ)

(

1−K(τ)

K5(τ)

)]

.

To the best of our knowledge, this is the first analytic
solution of the full Boltzmann equation for an expand-
ing interacting gas. At the initial time t̂0 (corresponding
to τ =0 and T (τ)=T0) one finds the initial condition
fk(0) = 256

243 (k/T0)λ exp[−4k/(3T0)] > 0. In Fig. 1 (b)
we plot the analytical solution for the ratio fk(τ)/f

eq
k (τ)

as a function of u·k/T (τ)= k/T0 for τ = 0, 5, and 10. At
τ =0 the high momentum tail is largely underpopulated
whereas momentum modes in the range k/T0 ∼ 1.6 − 5
are over-occupied relative to local equilibrium. As time
evolves, high momentum modes are populated at the ex-
pense of the over-populated moderate momentum region,
in a process resembling an energy cascade. Note, how-
ever, that when a(t̂) ∼ t̂1/2 one finds that limt̂→∞

τ(t̂) is
finite and (22) never assumes the equilibrium form.
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FIG. 1: (Color online) Time evolution of the moments Mn

(a) and of the ratio between the out-of-equilibrium solution
(22) and the equilibrium distribution (b).

The moment equations (19) can also be studied nu-
merically for a variety of initial conditions for which no
analytic solution is known. Here we briefly address the
question whether the direct energy cascade seen in Fig. 1
is related to self-similar behavior characteristic of tur-
bulence [35]. While a detailed study of self-similarity
in this system is beyond the scope of this short paper,
we note here that expressing the Boltzmann equation in
terms of its moments may be quite useful in this context.
For instance, one can show that non-thermal fixed points
corresponding to exact self-similar solutions of the kind

fk(t̂) = aγ(t̂) fS(a
β(t̂)u·k), (23)

where γ and β are the scaling exponents and fS is the
fixed point distribution [35], are not compatible with
Eq. (19). In fact, using Eq. (3) one can see that the scal-
ing exponents are necessarily γ=0 and β=1, and that
the Ansatz (23) for the distribution function (if assumed
to be valid for all momenta) leads to moments

ρSm(t̂) =
1

2π2

cSm
am+3(t̂ )

(24)

(where cSm =
∫

∞

0
dξ ξm+2 fS(ξ)) that have the same time

dependence as the equilibrium moments. This implies
that the corresponding normalized moments MS

m =
ρSm/ρeqm are time independent. Since the conservation
laws require that MS

0 = MS
1 = 1, one can then use (19)

to show that MS
m → 1 for all m. This shows that there

are no other true fixed points of the dynamics besides
local thermal equilibrium.

6. Conclusions. We derived from the relativistic Boltz-
mann equation a nonlinear set of coupled moment equa-
tions for a massless gas with constant cross section in a
homogeneous, isotropically expanding spacetime. For a
particular initial condition, we found that the moment
equations can be solved exactly, thereby obtaining the
first analytical solution of the Boltzmann equation with
full non-linear collision term for an expanding system.

The normalized moments of this expanding relativistic
gas can be directly mapped onto the corresponding mo-
ments for a homogeneous, static non-relativistic gas of
Maxwell molecules. This happens even though the dis-
tribution functions of these systems are not the same.
This nontrivial correspondence suggests that exact self-
similar non-equilibrium solutions may not exist even in
rapidly expanding systems.

The study performed here can be extended along sev-
eral directions. One may consider different types of cross
sections, or include nonzero particle masses to investi-
gate bulk viscous effects. If possible, the generalization
of the method presented here to expanding systems with
different symmetries [15, 18, 36–38] that are relevant for
the study of the quark-gluon plasma formed in heavy ion
collisions would be particularly desirable.
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