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Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these
errors is critically important for quantum error correction to be viable. To quantify leakage errors,
we use randomized benchmarking in conjunction with measurement of the leakage population. We
characterize single qubit gates in a superconducting qubit, and by refining our use of Derivative
Reduction by Adiabatic Gate (DRAG) pulse shaping along with detuning of the pulses, we obtain
gate errors consistently below 10−3 and leakage rates at the 10−5 level. With the control optimized,
we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.

Accurate manipulation of the states in a quantum
two-level system (qubit) is a key requirement for build-
ing a fault tolerant quantum processor [1]. However,
many physical quantum systems such as quantum dots
[2] and superconducting qubits [3] have multiple levels,
from which two levels are chosen to form the compu-
tational subspace. The presence of non-computational
levels leads to two types of errors: leakage errors where
the quantum state populates non-computational levels,
and phase errors due to coupling of computational and
non-computational levels when driven by control fields
[4, 5]. Previous experimental work [6, 7] on supercon-
ducting qubits has focused on reducing phase errors, be-
cause they were the dominant source of total gate in-
fidelity. Indeed, the suppression of phase errors using
Derivative Reduction by Adiabatic Gate (DRAG) pulse
shaping [8] has helped push single qubit fidelity in super-
conducting qubits over 99.9% [9, 10].

However, gate fidelity is not the only metric that de-
termines the viability of quantum error correction (QEC)
because certain errors are more deleterious than others.
Specifically, leakage errors are highly detrimental for er-
ror correcting codes such as the surface code, because
interactions with a qubit in a leakage state have a ran-
domizing effect on the interacting qubits [11]. Moreover,
leakage states can be as long-lived as the qubit states,
leading to time-correlated errors which further degrade
performance [12]. These concepts were recently demon-
strated in a 9 qubit repetition code [13], where single
leakage events persisted for multiple error detection cy-
cles and propagated errors to neighboring qubits. Under-
standing and reducing leakage is of critical importance for
realizing QEC.

In this Letter, we characterize single qubit leakage er-
rors in a superconducting qubit. To estimate leakage
errors, we use randomized benchmarking (RB) [14–17] in
conjunction with measurements of leakage state popula-

tions. Using this method, we show that previous experi-
mental realizations of DRAG pulse shaping have a trade-
off between total fidelity and leakage errors. We overcome
this tradeoff using additional pulse shaping, and obtain
gates that have both state of the art fidelity and low leak-
age. Additionally, we use RB to measure the dependence
of leakage on pulse length.

Our experiment uses Clifford based randomized bench-
marking [15], which is typically used to characterize av-
erage gate fidelity. In Clifford based RB, we apply a
random sequence of gates chosen from the single qubit
Clifford group, which is the group of rotations that map
the six axial Bloch states to each other. We then ap-
pend a recovery Clifford gate to the end of the sequence
such that the complete sequence is ideally the identity
operation. Thus, the fidelity of a sequence is the proba-
bility of mapping |0〉 to |0〉. By randomly choosing the
gates in each sequence, phase and amplitude errors ac-
cumulate incoherently, which leads to exponential decay
of the sequence fidelity with increasing sequence length.
The crux of our protocol is that randomization also accu-
mulates leakage errors incoherently [18], such that over
many gates we build up leakage populations to a level
that can be measured using current techniques. We note
that leakage as discussed here differs from irreversible loss
of the qubit; RB in the presence of loss was previously
discussed in Ref. [19].

For our testbed we use a single Xmon transmon qubit
[20, 21] (Q7) from the 9 qubit chain described in Ref. [13].
The transmon has a weakly anharmonic potential, shown
in Fig. 1(a), which supports a ladder of energy levels. The
two lowest levels form our qubit, and the primary non-
computational level is the |2〉 state. Leakage errors arise
when the qubit state is directly excited to the |2〉 state,
while phase errors occur due to AC Stark shifting of the
1↔2 transition [4]. We use the transmon because of its
demonstrated coherence and tunability [20, 22]. Alterna-
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tively, leakage can be suppressed by engineering qubits
with larger anharmonicities such as flux qubits, which
have recently also achieved high coherence [23].

We operate the qubit at a frequency f10 of 5.3 GHz,
and the anharmonicity ∆ = ω21−ω10 is 2π×−212MHz.
Microwave (XY) control is achieved using a capacitively
coupled transmission line driven at the qubit frequency.
We generate control pulses using a custom arbitrary
waveform generator, and the pulses are shaped with a
cosine envelope. We measure the qubit state using a dis-
persive readout scheme [24] in conjunction with a band-
pass filter [25] and a wideband parametric amplifier [26].
This setup allows us to discriminate the |2〉 state in ad-
dition to the two computational levels with high fidelity
[18]. The T1 of the device at the operating frequency is
22 µs, while a Ramsey experiment shows two character-
istic decay times [27], an exponential decay time Tφ1

of
8µs and a Gaussian decay time Tφ2

of 1.8µs.
To illustrate our novel use of RB, we begin by mea-

suring how DRAG suppresses leakage and phase errors.
We use the simplified version of DRAG described in
Refs. [6, 7]. Given a control envelope Ω(t), we add the
time derivative Ω̇(t) to the quadrature component:

Ω′(t) = Ω(t)− iα Ω̇(t)

∆
(1)

where α is a weighting parameter. Fourier analysis [4, 28]
shows that the DRAG correction suppresses the spectral
weight of the control pulse at the 1 ↔ 2 transition if
α = 1.0, which minimizes leakage errors. However, the
optimal value to compensate the AC Stark shift and cor-
rect for phase errors is α = 0.5 [4, 6].

We confirm these concepts by performing Clifford
based RB using 10 ns microwave pulses shaped with
three different values of α (0, 0.5, and 1.0), as shown in
Fig. 1(b). We combine up to three pulses to form a single
Clifford gate; on average each Clifford contains 1.5 π/2-
pulses and 0.375 π-pulses, resulting in an average gate
length of 18.75 ns. Figure 1(c) shows sequence fidelity
decay curves for the three values of α. As expected, using
α = 0.5 yields higher fidelities than α = 0.0 or α = 1.0.
We quantify this improvement using the characteristic
scale of the decay p, obtained by fitting to Apm + B
where A and B encapsulate state preparation, measure-
ment, and recovery errors. We then estimate the error
per Clifford as rClifford = (1− p)/2 [15]. For α = 0.5, we
obtain an error per Clifford of 9.6± 0.1× 10−4, while for
α = 0.0 and α = 1.0 we obtain errors of 6.3± 0.2× 10−3

and 1.20± 0.01× 10−2 per Clifford, respectively.
Simultaneously, we characterize leakage errors in our

gateset from the dynamics of the |2〉 state measured while
performing RB, as shown in Fig. 1(d). For all three val-
ues of α, the |2〉 state population shows an exponential
approach to a saturation population. Without correc-
tion, this saturation population is significant at about
10%, but decreases by a factor of 3 for α = 0.5 and by a

Figure 1: (a) Weakly anharmonic potential of a transmon.
When driving |0〉 to |1〉, direct excitation to |2〉 (red arrow)
causes leakage errors, while AC Stark repulsion of the 1↔2
transition (dashed lines) leads to phase errors. (b) Simple
DRAG correction, which adds the derivative of the envelope
to the quadrature component of the envelope. Three different
DRAG weightings (α) are shown. (c) Exponential decay of
sequence fidelity from randomized benchmarking, shown for
the three values of α. Each point is the average of 75 different
random sequences. Fidelity is highest for α = 0.5 (d) |2〉
state population vs sequence length, showing accumulation of
leakage with sequence length. Leakage is lowest for α = 1.0.

factor of 10 for α = 1.0. To quantify the leakage rate per
Clifford, we fit the |2〉 state dynamics to a simple rate
equation that takes into account leakage from the com-
putational subspace into the |2〉 state and decay from |2〉
back into the subspace [18].

p|2〉(m) = p∞
(
1− e−Γm

)
+ p0e

−Γm (2)
Γ = γ↑ + γ↓ p∞ = γ↑/Γ (3)

where p|2〉(m) is the |2〉 state population as a function
of sequence length m, γ↑ and γ↓ are the leakage and
decay rates per Clifford, and p0 is the initial |2〉 state
population. Using Eq. (2), we extract leakage rates of
3.92±0.08×10−4, 1.02±0.02×10−4, and 2.18±0.08×10−5

for α =0, 0.5 and 1.0.
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Figure 2: (a) Control envelopes with simple DRAG with
(right) and without (left) detuning of the pulse. The detuning
is exaggerated for illustration. (b) We sweep over the detun-
ing δf while performing the pseudo-identity sequence shown
in the inset. The sequence maps back to |0〉 when detuning is
optimized. Repeating the sequence increases the sensitivity of
the measurement. (c) Quantum state trajectories plotted on
projections of the Bloch sphere, with (bottom) and without
(top) optimal detuning. The data is obtained by performing
quantum state tomography (QST) after applying a variable
X rotation, with the rotation angle ranging from 0 to π.

The results from RB confirm the theory behind simple
DRAG: we can minimize either phase error or leakage
error, but not both. To simultaneously optimize for both
errors, we would like to minimize leakage using simple
DRAG, then separately compensate the AC Stark shift.
In the original DRAG theory, the Stark shift was compen-
sated using a time dependent detuning of the qubit [8].
As noted in Refs. [4, 5, 29], a constant detuning should
also be able to compensate the shift [30]. Given an en-
velope Ω′, which may have a quadrature correction, we
generate a new envelope

Ω′′(t) = Ω′(t)e2πi δf t (4)

where δf is the detuning of the pulse from the qubit fre-
quency. We also redefine the anharmonicity parameter
in Eq. (1) to be ∆ = ω21 − (ω10 + 2π δf), so that leak-
age suppression still occurs at the 1 ↔ 2 frequency. An
example of a detuned pulse is shown in Fig. 2(a).

To optimize the detuning parameter δf , we sweep
the detuning of a π-pulse while performing the pseudo-
identity operation of a π-pulse followed by a −π-pulse
along the same rotation axis [6, 31]. As shown in
Fig. 2(b), the detuning is optimized when the |0〉 state
population is maximized, and the pseudo-identity can be

Figure 3: Total gate fidelity and leakage rates versus DRAG
weighting α, measured using RB. (a) Without using pulse
detunings, we require different values of α to minimize overall
error versus leakage errors. (b) By optimizing our pulses using
detunings, we obtain high fidelity for any α, and are free to
choose α to minimize leakage.

repeated to increase the resolution of the measurement.
To verify that the detuning has suppressed phase errors,
we perform quantum state tomography after applying a
control pulse to our qubit while ramping the amplitude
of the pulse, as shown in Fig. 2(c). The Bloch vector only
reaches the opposite pole when the detuning is optimized.

We now explore in more detail the dependence of fi-
delity and leakage on α. In Fig. 3, we show parameters
extracted from RB with 10 ns pulses while varying α be-
tween 0.0 and 1.5. Without detuning the pulses, we find
the minimum error per Clifford to be 7.9±3×10−4 when
α = 0.4. We note that this is a deviation from the ex-
pected optimal value of α = 0.5, and the actual optimal
value can vary between 0 and 1 for different qubits and
operating frequencies. We attribute this deviation to dis-
tortions of the pulse between the waveform generator and
the qubit [31]. Away from the optimal α, the error in-
creases rapidly.

Next, we optimize the detuning of the pulses for each
value of α using the method described in Fig. 2. We find
that for π and π/2 pulses with the same length, the same
detuning for both pulses yields the best results. After
calibrating the detuning, we recalibrate the pulse ampli-
tudes, then run a short Nelder-Mead optimization on the
RB fidelity to get final adjustments to pulse parameters
[32]. With these optimizations, we find that the average
error per Clifford for all values of α to be 9.1×10−4, with
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Figure 4: (a) Leakage rate per Clifford extracted from RB
versus pulse length, with α = 0.0 and α = 1.1. The dashed
line is the lower bound on leakage calculated from the heating
rate. (b) Heating of the qubit from |1〉 to |2〉. We prepare the
qubit in |1〉, wait for time t, then measure the qubit state. In-
set: Dynamics of all three states, primarily showing T1 decay
of |1〉 to |0〉. Main figure: Zoom in of the |2〉 state dynamics,
showing an increase in population due to heating before re-
laxing back to zero. The data has been corrected for readout
visibility. The dashed line is a rate equation fit, from which
we extract the heating rate plotted in (a).

a standard deviation of 1× 10−4. In other words, we can
tune up high fidelity gates for any value of α.

With gate fidelity now independent of α, we are free to
implement DRAG solely to minimize leakage. Without
detuning, the minimum leakage rate is 1.82±0.07×10−5

for α = 1.1. After detuning the pulses for optimal fi-
delity, we see shifts in the leakage rates. For α > 0.4, we
detune the pulses towards the 1↔2 transition [18] which
tends to increase the leakage rate. Nevertheless, we can
still suppress leakage to the same level as the undetuned
pulses by increasing α to 1.4. Using these parameters,
we achieve both high fidelity (8.7± 0.4× 10−4 error per
Clifford) and low leakage (1.2± 0.1× 10−5) [18].

Having characterized 10 ns pulses in detail, we now ex-
amine the dependence of leakage on pulse length. As
noted previously, pulse detuning can affect the leakage
rate; for simplicity we set the detuning to zero for the
following measurements. We initially set α = 0.0 and
measure the leakage rate while varying the length of
our pulses between 8 ns and 50 ns and calibrating the
pulse amplitudes accordingly. We then repeat this mea-
surement with α = 1.1 where we previously minimized
leakage in Fig. 3(a). The results are shown in Fig. 4(a).
For short pulses, we observe that the leakage rate de-

creases exponentially with increasing pulse length, and
that DRAG correction suppresses leakage by an order of
magnitude or more. However, as the pulse length in-
creases past 15 ns, the leakage rate begins to level off and
even begins to increase. Furthermore, DRAG no longer
seems to suppress leakage for pulses longer than 20 ns.
These results suggest that for long pulses, leakage is due
to incoherent processes such as thermal excitations or
noise at the 1↔2 transition, rather than coherent control
errors.

To measure the incoherent leakage rate, we prepare the
qubit in the |1〉 state and measure the qubit’s dynamics,
as shown in Fig. 4(b). We see that the |2〉 state popu-
lation initially rises over 20µs, corresponding to heating
from |1〉 to |2〉. Then, the |2〉 population slowly decays to
zero as both excited states relax due to T1 processes. We
model the |2〉 population using a rate equation with three
rates: decay from |2〉 to |1〉, decay from |1〉 to |0〉, and
heating from |1〉 to |2〉. We ignore nonsequential tran-
sitions since they are suppressed in the nearly harmonic
transmon potential [33], as well as heating from |0〉 to
|1〉 since we assume the initial state is |1〉. We extract
the two decay rates from T1 measurements, which give
T
|1〉
1 = 22µs and T |2〉1 = 18µs [34]. We then fit the 1→ 2

heating rate to be 1/(2.2ms) [18].
We convert this heating rate to a leakage rate per Clif-

ford using the prescription in Ref. [27]. The resulting
lower bound on leakage is shown in the dashed line in
Fig. 4(a). For pulses longer than 15 ns, we find that the
leakage rate is within a factor of 2 of this lower bound,
confirming that even at these relatively short timescales,
we are being limited by incoherent processes. We note
that the heating rate and T1 decay rate are consistent
with an equilibrium population of 0.8% for the |1〉 state
[18]. In other works, equilibrium populations closer to
0.1% have been achieved [35], suggesting that incoherent
leakage can be reduced through improved thermalization.

In conclusion, we have used single qubit randomized
benchmarking to study leakage errors in a superconduct-
ing qubit. We showed that simple DRAG correction
alone cannot minimize leakage and total gate error simul-
taneously, but by detuning our pulses, we obtain gates
with both high fidelity and low leakage. We also mea-
sured the dependence of leakage on pulse length, and
found that heating of the qubit is a significant source
of leakage in our system. Because RB is platform in-
dependent, this method is applicable to other systems
provided they have high fidelity measurement of their
leakage states. This method can also be extended to
two-qubit gates, where entangling interactions can be a
significant source of leakage [4].
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