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Rainfall from ice-free cumulus clouds requires collisions of large numbers of microscopic droplets
to create every raindrop. The onset of rain showers can be surprisingly rapid, much faster than the
mean time required for a single collision. Large-deviation theory is used to explain this observation.
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The dynamics of the onset of rainfall from ice-free
(‘warm’) cumulus clouds is poorly understood [1–3].
A rain drop grows by collisions of microscopic water
droplets. A large number of microscopic droplets must
combine to make one rain drop: the volume increase is a
factor of approximately one million. The collision rates in
the early stages of the growth process are low (typically
of order one collision per hour). Given the large num-
ber of collisions required, it is very hard to understand
why rain showers can be initiated over short periods, of
perhaps twenty minutes.

One possible resolution is a consequence of the large
number of microscopic droplets which must combine to
make a raindrop. This implies that only very few drops
are required to undergo rapid growth, and perhaps there
are sufficient rare combinations of rapid multiple colli-
sions to explain rainfall: this has previously been em-
phasised by various authors [1, 4, 5]. Kostinski and Shaw
[6] introduced an elegant model for this runaway growth
process. They presented numerical evidence that the
model can lead to a rapid development of showers, but
a transparent theoretical approach is required. Because
this problem involves the analysis of rare events, methods
based upon large deviation theory [7, 8] are appropriate.
In this Letter these methods are used to investigate the
hypothesis that rare combinations of rapid collisions trig-
ger showers. It is shown that a rain shower can develop
over a timescale which is a small fraction of the mean
timescale for one collision.

This Letter will start by discussing some observations
and estimates [1–3] which illustrate the difficulties in
making a quantitative description of rainfall. These will
be followed by describing a model for runaway droplet
growth, equations (4) to (6), introduced in [6]. This
model will then be analysed using a large deviation the-
oretic approach.

A convecting cumulus cloud may have droplets of mean
radius radius a0 = 10µm, which result from condensation
onto aerosol nuclei. Raindrops have a much larger size,
typically 1mm. The volume of a droplet which becomes
a raindrop therefore increases by a very large factor, de-
noted by N , which is typically N ≈ 106. The num-
ber density of microscopic droplets is typically of order
N0 = 2.5 × 108m−3, which gives a liquid water content,

expressed as a volume fraction, Φl ≈ 4πN0a
3
0/3 ≈ 10−6.

The cloud depth may be h = 2 × 103m and the typical
vertical velocity of air inside the cloud has magnitude
U ≈ 2m s−1, so that the turnover time for convection
is approximately τh = 103 s. Rainfall from this type
of cloud can develop over a timescale of approximately
20min ≈ 103 s.

Collisions between droplets arise principally from dif-
ferent terminal velocities. The Stokes law for the drag
on a sphere at low Reynolds number indicates that the
terminal velocity is

v = τpg = αa2 , α =
2
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where τp is the response time characterising the Stokes
drag on a droplet, ρl is the density of liquid water, and
ρg and ν are, respectively, the density and kinematic vis-
cosity of air. Inserting values for air and water at 5◦C
gives α ≈ 1.4×108m−1s−1, so that when a0 = 10µm the
terminal velocity is v ≈ 1.4×10−2ms−1 and the response
time is 1.4×10−3 s. The collision rate of a drop of radius
a1 with a gas of droplets of radius a0 is

R1 = πεN0(a0 + a1)
2α(a21 − a20) (2)

where ε is the coalescence efficiency [1, 2]. The coales-
cence efficiencies ε of small droplets are somewhat un-
certain, but it is widely accepted that they are low for
typical cloud droplets [1, 2]. If the larger droplet has ra-
dius below 20µm, it is believed that ε ≤ 0.1, and that for
radius 10µm, ε ≤ 0.03 [2]. For droplets of size a = 50µm
colliding with droplets of size a = 10µm, however, the
efficiencies are expected to be close to unity [1, 2]. Set-
ting a1 − a0 = 2.5µm and ε = 0.03 in addition to the
parameters defined above gives R1 ≈ 2 × 10−5s−1. The
rate of coalescence of typical sized water droplets due to
collisions is therefore very small.

Cumulus clouds are turbulent because of convective
instability. Saffman and Turner [9] investigated the
role of turbulence in facilitating collisions between water
droplets. In the case of very small droplets, the collision
rate due to turbulence is a consequence of shearing mo-
tion. The shear rate of small-scale motions in turbulence
is the inverse of the Kolmogorov timescale, τK =

√

ν/ǫ,
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where ǫ is the rate of dissipation per unit mass. Ac-
cording to the Saffman-Turner model, shear induces a
collision speed of order a0/τK. They argue that the cor-
responding collision rate is

Rturb =

√

8π
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N0ε(2a)
3

τK
. (3)

For the parameters of the cloud model, the rate of dissi-
pation is ǫ ∼ U2/τh ≈ 2×10−3m2s−3, giving τK ≈ 70ms,
which gives Rturb ≈ 10−6 s−1, which is negligible. The
effects of turbulence are dramatically increased when the
effects of droplet inertia are significant: this was noticed
in numerical experiments by Sundaram and Collins [10],
who ascribed the effect to a clustering effect termed ‘pref-
erential concentration’ [11]. More recent work has pro-
posed an alternative mechanism, which has been termed
the ‘sling effect’ [12], and which has been explained in
terms of the existence of caustics in the velocity field of
the droplets [13]. Inertial effects are measured by the
Stokes number, St ≡ τp/τK. Recent numerical studies
[14] (see also [15]) show that while the collision rate is
greatly enhanced by effects due to caustics for St > 0.3,
equation (3) is a good estimate when St ≪ 1. Although
it is in principle possible for turbulence to increase the
collision rate of water droplets due to inertial effects,
the parameters of the cloud model discussed above yield
St ≈ 2× 10−2, where there is no significant effect. While
there is a consensus that turbulence is important for the
formation of rain showers [16], turbulent enhancement of
collision rates does not appear to be sufficient.
Now consider how to model the onset of a shower, de-

veloping the approach discussed in [6]. It has already
been remarked that showers occur on a timescale which
may be smaller than the typical timescale for one col-
lision. It is, therefore, reasonable to assume that the
runaway droplets are falling through a background of
droplets which have not yet coalesced, and which are all
of similar size. As a runaway droplet falls it collides with
a large number N of small droplets of size a0. The time
between successive collisions may be assumed to be in-
dependent Poisson processes. If the time between the
collision with index n and the previous collision is tn, the
time for a droplet to experience runaway growth is

T =

N
∑

n=1

tn (4)

where the tn are independent random variables with an
exponential distribution

Pn(tn) = Rn exp(−Rntn) . (5)

The problem is to determine the statistics of T in the
limit as N → ∞. Note that, because the droplets grow
by collisions, the droplet volume increases by a factor of
approximately N as a result of these collisions, so that

its radius increases by a factor of N 1/3. Equation (2)
shows that the rates for successive collisions increase as
the size of the falling drop grows. Because all of the
collision rates Rn scale in the same way as a function
of the droplet size a0 and the number density N0, write
Rn = R1f(n). Here R1 depends upon the properties
of the cloud but the function f(n) is the same for all
clouds. In order to identify the form of f(n), consider
the rate of collision of a large droplet resulting from n
previous collisions with a gas of small droplets of radius
a0. The radius of the large droplet is an = n1/3a0. When
n is large it may assumed that the collision efficiency is
ε ≈ 1 and an ≫ a0 so that Rn ∼ πN0αa

4
n ∝ n4/3, which

suggests setting f(n) = n4/3. However during the early
stages of droplet growth, the collision efficiency for the
first few collisions is small, but increases rapidly with n.
In what follows f(n) is assumed to be a power-law, so
that

Rn = R1n
γ . (6)

If the collision efficiency of droplets were unity, it would
be appropriate to set γ = 4/3. Because the collision ef-
ficiency of droplets at the crucial initial stage of their
growth is small, the collision rate increases more rapidly
as the size of the falling droplet increases. When the
droplets are between 10µm and 50µm it is reasonable
to model the product of the collision rate and the col-
lision efficiency as being proportional to a6, that is to
n2, where n is the number of collisions [6]. In other
cases, such as solid precipitation (snow), other values of
γ may be appropriate. In the following γ is left as an
adjustable parameter, but special consideration is given
to γ = 2, because it gives a good approximation to ter-
restrial rainfall, and to γ = 4/3, because this may be
a good approximation for atmospheres on other planets
where the collision efficiency might not limit the rate of
coalescence. The remainder of this Letter is concerned
with using large deviation theory to analyse the conse-
quences of the model contained in equations (3) to (6).
It is necessary to determine the probability density for

the time T being a very small fraction of its mean value,
〈T 〉. Inspired by large deviation theory [7, 8], the proba-
bility density of T is written in an exponential form:

P (T ) =
1

〈T 〉
exp[−J(τ)] , τ =

T

〈T 〉
. (7)

When Rn is given by (6), the mean time for explosive
growth converges as N → ∞ when γ > 1:

lim
N→∞

〈T 〉 = lim
N→∞

1

R1

N
∑

n=1

n−γ =
1

R1

ζ(γ) . (8)

where ζ is the Riemann zeta function. The function J(τ)
in (7) is often termed the entropy in texts on large devi-
ation theory [7, 8]. It will be necessary to determine the
entropy function J(τ) from the rates Rn.
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After a drop has grown to a size where it is much
larger than the typical droplets, and where the collision
efficiency is approximately unity, it falls rapidly and col-
lects other droplets in its path. Consider a drop of size
a1 falling through a ‘gas’ of much smaller droplets, with
liquid volume fraction Φl. The larger drop falls with ve-
locity v and sweeps out a volume πa21v per unit time, so
that it grows in volume at a rate V̇ = πεa21Φlv = 4πa21ȧ1,
where ȧ1 is the rate of increase of the drop radius. The
rate of increase of the radius of the ‘collector’ drop as a
function of the distance x through which it has fallen is
therefore

da

dx
=

εΦl

4
. (9)

Note that this expression is valid whether or not the ter-
minal velocity is given by the small Reynolds number
approximation, (1). In the case of droplets which reach
a radius of approximately 1mm, the collision efficiency ε
is close to unity throughout most of the fall. The droplet
radius after falling through a cloud of depth h is therefore
a(h) ∼ Φlh/4. It will be assumed that the most relevant
collector drops are those that started at the top of the
cloud. Because droplets grow by coalescence of micro-
scopic droplets as they fall, the ratio of the final volume
to the initial volume is equal to the number of collisions:
this is

N =

(

h

4a0

)3

Φ3
l . (10)

Using the representative values given above gives N ≈
105. Kostinski [17] has used related arguments to explain
observations that the rate of production of drizzle from
maritime stratus cloud is proportional to the cube of its
depth.
The fraction of droplets undergoing runaway growth

between time t and t+ δt is P (t)δt. Because the volume
of the runaway growth droplets has increased by a factor
of N , when these raindrops fall out of the cloud they
reduce the liquid water content Φl by NΦlP (t)δt. The
rate of change of the liquid water content of a cloud due
to the runaway growth of droplets is therefore

dΦl

dt
= −ΦlNP (t) . (11)

Note that the growth factor N and the probability den-
sity for runaway growth after time t are both functions of
Φl, but if the objective is to understand the onset of a rain
shower it suffices to evaluate these quantities with the ini-
tial value Φl(0). The onset of the shower is determined by
the criterion that a significant fraction µ (typically a few
percent) of the liquid water content of a cloud is removed
by creating raindrops, resulting from N collision events:
from (11) this occurs when N

∫ t

0
dt′ P (t′) = µ. Using

(7) for P (t), the condition for the timescale t∗ where

there is a significant reduction in Φl(t) is approximated
by N ∗ exp[−J(t∗/〈T 〉)] = 1, where N ∗ = N/µ is a large
number, typically N ∗ ≈ 106. The condition for the onset
of a shower is, therefore,

t∗ = τ∗〈T 〉 , J(τ∗) = lnN ∗ . (12)

To determine determine the solution of (12) for t∗, it is
necessary to determine the entropy function J(τ) for the
random sum defined by (4) and (5).
Now consider how to compute J(T ). A cumulant gen-

erating function λ(k) is defined by writing

exp[−λ(k)] = 〈exp(−kT )〉 =

∫ ∞

0

dT P (T ) exp(−kT ) .

(13)
Because the tn are independent, with a distribution given
by (5):

λ(k) = −
N
∑

n=1

ln〈exp(−ktn)〉 =
N
∑

n=1

ln

(

1 +
k

Rn

)

. (14)

Consider how to obtain P (T ) from λ(k). Noting that
exp[−λ(k)] is the Laplace transform of P (T ), application
of the Bromwich integral formula for inversion gives

P (T ) =
1

2πi

∫ R+i∞

R−i∞

dz exp[zT − λ(z)] (15)

where R > −R1. The integral is dominated by contribu-
tions from the neighbourhood of a saddle at z = k∗ (on
the real axis), where

T =

N
∑

n=1

1

Rn + k∗
(16)

which is to be solved for the saddle point k∗ given a
value of the time T . The probability density P (T ) is
then approximated by

P (T ) =
1

R1

1
√

2πJ ′′(k∗)
exp[−J(τ)] (17)

where τ = T/〈T 〉 and J ′′(k) is the magnitude of the
second derivative of the exponent in (15). Equations (16)
and (17) cannot be solved exactly and explicitly for J(τ).
Consider how to write down a parametric representation
of J(τ) using a scaled variable, κ, defined by κ = k∗/R1.
Imposing the requirement that the integrand of (15) is
stationary with respect to z, in the limit as N → ∞, the
dimensionless time for raindrop formation is

τ(κ) =
1

ζ(γ)

∞
∑

n=1

1

κ+ nγ
(18)

(this is a dimensionless version of (16), expressed in terms
of τ = T/〈T 〉 = R1T/ζ(γ)). The entropy function is the
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value of the exponent of (15) evaluated at the stationary
point κ which solves (18): in the limit as N → ∞ this is

J(κ) = S(κ)− ζ(γ)κ τ(κ) (19)

with

S(κ) =

∞
∑

n=1

ln
(

1 + κn−γ
)

. (20)

In general, equation (18) must be solved numerically to
determine κ for a given value of τ , but it is possible to
extract asymptotic expressions which are valid for small
and large τ . The small τ asymptotics are determined
by the large κ asymptotics of the sums in (18) and (20).
These require some delicate analysis (detailed in the Sup-
plementary Materials), but the methods are standard.
The leading order behaviour of S(κ) is

S ∼ γA(γ)κ
1
γ −

1

2
ln(κ)− γC +O(κ−1) (21)

where C is a constant defined in the supplementary ma-
terials, and

A(γ) =
1

γ

∫ ∞

0

dx
x−

γ−1
γ

1 + x
=

1

γ
B

(

1−
1

γ
,
1

γ

)

(22)

(here B(v, w) is the Euler beta function as defined in
[18]). Differentiation of S(κ) yields an expression equiv-
alent to (18) relating for τ to κ, which can be inverted to
give an expression for the saddle point

κ∗ = bτ−
γ

γ−1

[

1− cτ
1

γ−1

]

(23)

where b and c are functions of γ. In terms of τ , the
leading order terms of the entropy are

J(τ) = (γ − 1)Ab
1
γ τ−

γ

γ−1 +
γ

2(γ − 1)
ln τ +D (24)

where D is another constant. Furthermore, in terms of τ
the second derivative of the entropy, J ′′, is proportional

to τ
2γ−1
γ−1 . The probability density is therefore

P (τ) = Kτ−
3γ−1

2(γ−1) exp(−C/τ
1

γ−1 ) (25)

where C = (γ − 1)Ab
1
γ and K is another constant which

can be explicitly constructed. For completeness, the ap-
proximation of P (τ) for N → ∞ and τ ≫ 1 is

P (τ) ∼ ζ(γ) exp[S(γ)−ζ(γ)τ ] , S(γ) =
∞
∑

n=2

ln(1−n−γ) .

(26)
Figure 1 shows the distribution of τ = T/〈T 〉 for the

case γ = 2 (the case which is most relevant to rain show-
ers), with N = 104 and R1 = 1, comparing the results of
simulation of (4), the Bromwich integral (15), the saddle-
point approximation, equations (17), (19), (20), and the
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FIG. 1. (Color online). Plot of ln[P (τ )], for N = 104 and
γ = 2. The results of simulation, evaluation of the Bromwich
integral, and the saddle point approximation, and the explicit
asymptotic formulae, equations (25) (used where τ ≤ 1) and
(26) (used for τ > 1) for all are in excellent agreement.

explicit asymptotic formulae, (25) and (26), which are
all in excellent agreement. A small discontinuity in the
asymptotic expression at τ = 1 marks the switch be-
tween using (25) and (26). The entropy function in-
creases very rapidly as τ → 0, indicating that the value of
τ∗ = t∗/〈T 〉 is quite insensitive to the value of lnN . It is
clear from figure 1 that the solution of equation (25) gives
small values of τ∗ when N is large. Numerical evalua-
tion of the solution of (12) using the Bromwich integral
of P (τ) with γ = 2 gives τ∗ ≈ 0.077 when N = 105

and τ∗ ≈ 0.068 when N = 106. Alternatively, in terms
of 〈t1〉 = 〈T 〉/ζ(γ), when γ = 2, the predicted time for
onset of a shower is a small fraction of the mean time
for the first collision: t∗ ≈ 0.128〈t1〉 when N = 105 and
t∗ ≈ 0.112〈t1〉 when N = 106. These estimates for t∗ are
compatible with results reported by Kostinski and Shaw
[6].

In the case where γ = 4/3, there is also excellent agree-
ment between the exact evaluation of P (τ) using (15) and
the saddle point approximation. While (25) is the precise
asymptotic expression for P (τ) in the limit as τ → 0, for
γ = 4/3 the convergence of this estimate is not good as
for γ = 2. Reasons for this, and an improved asymptotic
approximation which also gives excellent agreement with
simulations at γ = 4/3, are discussed in the Supplemen-
tary Material.

Equations (12) and (25) imply that the timescale t∗

for the initiation of a shower is smaller than the mean
time for a single collision. Surprisingly, the timescale t∗

decreases as the number of collisions required to make a
raindrop increases: as N ∗ → ∞ the dominant term of
(24) as τ → 0 gives

τ∗ ∼
1

R1

[ln N ∗]−
γ−1
γ . (27)
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Thus large deviation theory has resolved an apparent
paradox of meteorology, that rain showers can start very
quickly, on timescales which are short compared to typi-
cal mean collision times.
This calculation does not resolve all of the uncertain-

ties about initiation of rain showers. Clouds can exist for
a long period without producing a rain shower, before de-
positing a significant fraction of their water content over
a short time. Shower activity is associated with convec-
tive motion in clouds. For typical levels of turbulence,
however, turbulent enhancement of collisions does not
appear to be sufficient to trigger showers. It seems as
if non-collisional mechanisms involving convection must
play a role in initiating the cascade [19].
This work was initiated during a visit to the Kavli In-

stitute for Theoretical Physics, Santa Barbara, and sup-
ported in part by the National Science Foundation under
Grant No. NSF PHY11-25915.
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