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Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-
positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized
theory of three-wave coupling between electromagnetic and plasma waves in two-species plasmas
with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, re-
veals violations of commonly-held assumptions about the behavior of electron-positron plasmas.
Specifically, in the electron-positron limit three-wave parametric interaction between light and the
plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed
value.

Plasma interaction with electromagnetic fields is vital
to the study of electron-positron plasmas, which appear
in nature as a component of the early universe [1] and
in the vicinity of pulsars [2, 3], quasars [4], and black
holes [5, 6]. Laboratory-created electron-positron plas-
mas have long been recognized as an exciting fundamen-
tal and technological opportunity for exploration of many
astrophysical and anti-matter phenomena. Ongoing ef-
forts to reproduce such plasmas in the laboratory [7, 8]
have recently culminated in a demonstration of a neutral
and relatively dense (1016 cm−3) laser-produced electron-
positron plasma [9], yielding a path to laboratory obser-
vation of collective effects in pair plasmas and prompting
examination of untested assumptions about the collective
behavior of electrons and positrons.

In the electron-positron limit, many standard plasma
approximations break down due to the equal masses
of the plasma components. Electron-positron plasmas
are expected to exhibit unusual properties including en-
hanced solitary-wave phenomena, the absence of Fara-
day rotation, and strong nonlinear Landau damping [10],
as well as differences in the behavior of turbulence [11].
In particular, although electromagnetic field interaction
with density perturbations has been discussed [12], it is
claimed that three-wave coupling (i.e. stimulated Ra-
man and Brillouin scattering) entirely vanishes in an
electron-positron plasma [8, 10, 12–14] because the non-
linear current and charge density have a cubic depen-
dence on charge [10]. However, since the transverse
nonlinear current, which mediates backscattering, has a
quartic dependence on charge, it does not cancel, and
the above argument does not apply to the acoustic mode.
An alternative picture for the suppression of stimulated
Raman scattering is that the laser-driven ponderomo-
tive force acts equally on electrons and positrons, so
the net charge difference required for the formation of a
Langmuir wave cannot develop, an argument which does
not apply to stimulated Brillouin scattering because the

acoustic mode does not require a net charge difference.

Here we analytically and numerically study three-wave
coupling in two-species plasmas where the components
have comparable masses and equal temperatures, yield-
ing a complete picture of stimulated Raman and Brillouin
scattering. Differing from previous studies, our theory
and numerical simulations predict significant stimulated
Brillouin scattering in electron-positron plasmas, in con-
trast to the suppression of Raman scattering. Our use
of fully kinetic particle-in-cell (PIC) simulations allows
us to address the deficiencies of the two-fluid model in
capturing the behavior of the electron-positron acoustic
mode.

Plasma-based laser amplification by stimulated Ra-
man or Brillouin backscattering of counter-propagating
laser beams has been studied in detail [15–24] as a
method for producing ultra-short pulses of extraordinar-
ily high intensities by avoiding the compression gratings
of chirped pulse amplification [25]. In Raman and Bril-
louin amplification, Langmuir and ion-acoustic waves, re-
spectively, mediate the transfer of energy from a long
pump laser pulse to a short, lower-frequency seed laser
pulse. Ponderomotive forcing at the difference frequency
of the two counter-propagating electromagnetic waves
drives plasma fluctuations, which scatter pump photons
into frequency-downshifted seed photons. When appro-
priately phase-matched, the fluctuations grow rapidly
in time, producing massive amplification. Analysis of
the governing equations leads to phase-matching con-
ditions for the frequency (ω) and wavevector (k) of
the pump, seed, and plasma waves, i.e. conservation
of energy (ωpump = ωseed + ωplasma) and momentum
(kpump = kseed + kplasma). With these relations, a
counter-propagating geometry becomes a powerful tool
for computationally or experimentally validating an an-
alytically determined plasma dispersion relation ω(k),
since resonant amplification will be observed at the kseed

which satisfies the phase-matching conditions.
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Unlike those of an electron-ion plasma, the longitudinal
modes of an electron-positron plasma are not separable
by species. Instead of a Langmuir wave governed by the
electron number density (ne) and an acoustic wave driven
primarily by the ion (i) dynamics, we have a plasma wave
corresponding to charge density fluctuations (∝ [ne−ni])
and an acoustic wave with no electrostatic component
corresponding to total density fluctuations (ne+ni) [26].
Below, we derive a dispersion relation which connects the
heavy-ion and electron-positron limits for arbitrary mass
ratios in the range 0 ≤ β = me/mi ≤ 1 (ms is mass
of species s). Approaching the electron-positron limit
by varying β, rather than varying the ion-positron ra-
tio, provides an intuitive picture of the transition from
the ion-acoustic wave (β → 0) to the electron-positron
acoustic wave (β = 1). Note that we will use e and
i (electron and ion) to denote negatively and positively
charged particles, though the results are applicable both
to electron-positron plasmas (β = 1) and previously
studied comparable-mass ion-ion plasmas, e.g. C−60/C+

60

(β ≈ 1) [27–29], Tl+/I− (β ≈ 0.62) [30], or Cs+/UF−6
(β ≈ 0.38) [31].

In a two-fluid treatment of the longitudinal modes, the
one-dimensional species (s = i, e) continuity, species mo-
mentum, and Poisson equations formulated in terms of
previously defined variables and species charge (qs), ve-
locity (vs), partial pressure (Ps), and electric field (E)

∂tns + ∂x(nsvs) = 0 (1)

msns(∂tvs + vs∂xvs) = −∂xPs + qsnsE (2)

∂xE = 4πe(ni − ne) (3)

may be linearized and solved by assuming solutions of the
form ei(kx−ωt). We deal with pressure by setting ∂xPs =
γsTs∂xns, with γs a correction factor for dropping the
derivative of temperature (Ts) term from the derivative
of the ideal gas law. Note that we only consider ions with
one missing electron so that the species charges (qe =
−qi) have the magnitude of a single electron charge (e),
and for our initially neutral plasma ne,0 = ni,0. For now,
we will leave γs unspecified, apart from observing that
for a one-dimensional adiabatic process γs = 3, and for
an isothermal process γs = 1. The resultant coupled
equations may be solved [32] for ω to yield:

ω2
(L,A) =

1

2
ω2
ekβ±

1

2

√
ω4
ekβ − 4k2C2

eβ [(1 + α)ω2
e + αk2C2

e ]

(4)
where ω2

ekβ = (1 + β)ω2
e + (1 + βα)k2C2

e , ω2
e =

4πne,0e
2/me, C

2
s = γsTs/ms, α = γiTi/γeTe, and k =

|k|. Langmuir waves (L) are given by the upper sign and
acoustic waves (A) by the lower sign.

For immobile ions (β = 0), only the Langmuir wave
solution exists, with ω2

L = ω2
e + C2

ek
2 = ω2

e + 3Tek
2/me

(γe = 3). To find the ion-acoustic dispersion relation
for a heavy-ion plasma, we consider Eq. 4 in the limit
β → 0, k2 → 0, and α → 0, since the ion-acoustic wave
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FIG. 1: Dispersion relations for the Langmuir and acoustic
modes as β = me/mi is varied between 0 and 1 for Te = Ti.
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calculation is valid for Te � Ti, yielding the standard
ω2
A = k2Te/mi. Considering the electron-positron limit,

we have β = 1 and, in agreement with previous results
[26], we find ω2

(L,A) = ω2
e + k2C2

e ± ω2
e .

Due to the equivalent thermalization times of electrons
and positrons, and our focus on β > 0.1, we will consider
in detail only α = 1. The resultant dispersion relation,
valid for 0 ≤ β ≤ 1, is, after some manipulation:

ω2
(L,A) =

1

2
(1 + β)ω2

ek ±
1

2

√
(1− β)2ω4

ek + 4βω4
e (5)

where ω2
ek = ω2

e + k2C2
e . By inspection, this equation

still satisfies the electron-positron and immobile-ion lim-
its. Equation 5 is plotted for 0 ≤ β ≤ 1 in Fig. 1 at
Te,i = 70 eV and an electron number density ne = 1019

cm−3. The Langmuir mode (upper curves) is charac-
terized by the limits ω2

L → (1 + β)ω2
e as k → 0 and

ω2
L/k

2 → 3Te/me as k → ∞, resulting from γe = 3,
which is valid for all β, and γi = 3 in the regime β ≈ 1
where positively-charged particles substantially affect the
Langmuir wave. For the acoustic mode, the dispersion
relations for γs = 3 and γs = 1 are both presented at
β = 0, 0.1, 1, with the region between the two values of
γs shaded, because the adiabatic assumption (γs = 3),
which requires that the wave phase velocity is much
greater than the species thermal velocity, is not valid
for the acoustic mode. The similar phase and thermal
velocities also result in Landau damping, so the acoustic
wave is not easily observed in equal-mass plasmas [26].
Though Eq. 5 suggests ω2

(L,A)/k
2 → γeTe/me as k →∞

for both modes, the different possible values of γe means
that the group velocities may differ in the large k limit,
in contrast to the usual assumption [26, 33].

Figure 2a presents the effects of coupling between
counter-propagating laser pulses in a 0.8 mm long, 70 eV
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plasma with mi = 10me (β = 0.1) and ne = 1019 cm−3

(0.0057nc) as found with fully-kinetic one-dimensional
PIC simulations using the code EPOCH [34], showing
the intensity envelope of amplified seed pulses of variable
wavelength (λseed) after the interaction. Under these
conditions, the lifetime of an electron-positron plasma
is on the order of 10 µs, more than 108 plasma wave
periods [35–37]. The pump (initial intensity I0 = 1014

W/cm2) wavelength (λpump) is fixed at 800 nm as the
seed (I0 = 1014 W/cm2, intensity FWHM: 50 fs) wave-
length is varied between 780 and 950 nm. The above
parameters are also used in subsequent simulations, un-
less otherwise noted, with 80 cells/λpump and 60 parti-
cles/cell. In Fig. 2a, two distinct resonances appear, near
875 nm (Raman) and 815 nm (Brillouin), giving the re-
lationship between ωplasma and kplasma at these plasma
conditions; the different shapes of the intensity envelopes
arise partially from the different damping behavior of the
Langmuir and acoustic waves. The simulation param-
eters were chosen to be computationally tractable and
allow comparison to previous results for Raman amplifi-
cation at β = 0.

To demonstrate how β affects both the resonance wave-
length and the instability growth rate, the final maximum
intensity of the seed laser is plotted as a function of λseed
in Fig. 2b. Both the Raman and Brillouin resonances
appear at longer seed wavelengths as β → 1, indicating
higher Langmuir and acoustic frequencies, and the Bril-
louin mode shows substantial enhancement.

We may consider in more detail the Raman (upper)
solution to Eq. 5. The heavy-ion (β → 0) Langmuir
wave neglects the ion contribution and takes γe = 3,
which is valid where the electron thermal velocity is much
lower than the Langmuir wave phase velocity. Since the
thermal velocity of the ions is lower than that of the
electrons, wherever γe = 3 is true, we can also take γi =
3. The Langmuir-wave phase velocity at phase-matched
k for the regime of interest (kλD ≈ 2kpumpλD ≈ 0.18 at
Te,i = 70 eV, ne = 1019 cm−3, and λpump = 800 nm) in
an electron-positron plasma is higher than the particle
thermal velocities, so the compression may be treated as
adiabatic, justifying γe,i = 3 for all β.

Figure 3 shows the resonant seed wavelengths pre-
dicted analytically by Eq. 5 (solid lines) and determined
from PIC simulations (points) by varying λseed to find
the value which results in the largest amplification. The
theoretical predictions and simulation results agree for
the Raman mode, suggesting that Eq. 5 captures the key
dynamics of resonance for 0 ≤ β ≤ 1. The pump inten-
sity does not affect the Raman resonance wavelength in
this regime, as shown by the overlap of the 70 eV results
at two different pump strengths. Note that in Fig. 3 there
are no simulation points at β = 1 for the Raman mode.
This follows from the observation in Fig. 2 that Raman
mode amplification vanishes as β → 1, as previously pre-

FIG. 2: (a) Amplified seed pulses of different wavelength
(λseed) after passage through a 0.8 mm plasma with ne,i =
1019 cm−3 and mi = 10me. Initial counter-propagating pump
and seed intensities are 1014 W/cm2 and Te,i = 70 eV. (b)
Maximum final intensity of an amplified seed at varied wave-
length and ion mass mi with the same other parameters as
(a). The dashed line indicates the initial seed intensity.

dicted [10].

Though we might hope that the acoustic mode, which
in the heavy-ion limit is described by γe = 1 and γi = 3
[38], also approaches γe,i = 3 in the electron-positron
limit, the similarity of the acoustic wave phase velocity
and particle thermal velocity means that wave propa-
gation and thermalization are coupled, invalidating the
adiabatic assumption. As Fig. 3 shows, the resonant
λseed for the Brillouin mode falls between the γe,i = 3
and γe,i = 1 solutions of the acoustic dispersion rela-
tion. Because the thermal and phase velocities are of the
same order, thermalization of the velocity distributions
occurs on the timescale of the wave period. Specifically, a
non-negligible particle population travels multiple wave-
lengths in a single period and equilibrates the velocity
distributions across the acoustic perturbations. There-
fore, in the low-pump-intensity limit, the resonance con-
dition for the electron-positron acoustic wave approaches
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FIG. 3: Seed wavelengths (λseed) at which maximum Ra-
man or Brillouin amplification is observed in PIC simulations
(points) at varied plasma temperature (Te,i = 20, 70, 240 eV)
and ion mass (β = me/mi), found by varying λseed at fixed
λpump = 800 nm. The solid lines are calculated from Eq. 5.
For the Brillouin mode, the upper and lower lines at each
temperature correspond to γe,i = 3 and γe,i = 1, respectively.
The 0.8 mm long plasma has a density ne,i = 1019 cm−3 and
Ipump,0 = Iseed,0 = 1014 W/cm2. The gray circles are calcu-
lated at a temperature of 70 eV and a higher pump intensity
(1015 W/cm2) and overlap the lower intensity points for the
Raman mode. The bars give uncertainty due to the finite size
of changes in λseed between simulations.

the isothermal (γs = 1) rather than adiabatic (γs = 3)
solution. This effect should be stronger (i.e. the res-
onance should be closer to γs = 1) at higher temper-
atures and lower intensities, in agreement with 70 eV
Brillouin results of Fig. 3. The counter-propagating ge-
ometry provides access to this difficult-to-study heavily-
damped mode. A more precise analytic description of the
acoustic resonance requires a kinetic approach, which lies
beyond the scope of this paper.

To analytically predict the amplification growth rate
in arbitrary-ion-mass plasmas we require an equation for
how a plasma perturbation mediates energy transfer be-
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FIG. 4: Perturbation growth rate (Γ) for Raman and Brillouin
scattering from the analytic dispersion relation (a) and found
with PIC simulations below the saturation regime (b) at Te =
Ti = 20 eV and ne = 1019 cm−3. In (b), the initial seed
intensity is 1011 W/cm2. (c) Simulated change in seed pulse
intensity (Iseed,0 = 1014 W/cm2) after passage through 0.4
mm of plasma (Te = Ti = 70 eV, ne = 1019 cm−3).

tween the pump and seed (vector potential A) [32]

[
∂2t − c2∇2 + (1 + β)ω2

e

]
Aseed = −4πe2

me
[βñi + ñe]Apump

(6)
where ñs = ns − ns,0 represents the density fluctua-
tions, and a pair of equations describing how counter-
propagating electromagnetic waves drive electron (Eq. 7)
and ion (Eq. 8) plasma fluctuations [32]

(∂2t − C2
e∇2)ñe + ω2

e(ñe − ñi) = Fpe (7)

(∂2t − βαC2
e∇2)ñi − βω2

e(ñe − ñi) = β2Fpe (8)

where Fpe = [ne,0e
2/m2

ec
2]∇2(Apump · Aseed). Equa-

tions 6, 7, and 8 may be linearized and combined to
produce a single dispersion relation for the full system
(see [32]). The substitution ω = ω(L,A) + δ into the dis-
persion relation [39], where |δ| � ω(L,A), gives an ana-
lytic formula for the instability growth rate of the seed
field (Γ = Im(δ)) [32]. For β = 1, ΓL = 0 and ΓA =

(ωekeApump/4mec) [kCe(ωpump − kCe)/2]
−1/2

. The cal-
culated growth rate for arbitrary β is plotted in Fig. 4a,
and the growth rate observed at corresponding conditions
in PIC simulations is given in Fig. 4b. The growth rate
observed in PIC simulations does not reach the maxi-
mum predicted analytically, partially due to the neglect
of kinetic effects. Fig. 4c shows the change in seed inten-
sity after passage through a 4 mm plasma, demonstrating
that the general trend of amplification persists at intensi-
ties for which the seed reaches the saturation regime. In
all three plots Brillouin scattering is strongly enhanced
in the electron-positron plasma case.

In summary, we have analyzed three-wave coupling
in plasmas where the heavy-ion approximation does not
hold. Because of their appearance in astrophysical phe-
nomena and recent laboratory experiments, we empha-
size electron-positron plasmas, though our results apply
more generally. We show that the acoustic mode in an
electron-positron plasma has a lower value of γs than usu-
ally assumed in the literature. Most significantly, we find
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substantial stimulated Brillouin scattering in an electron-
positron plasma, challenging the assumption that both
Raman and Brillouin scattering are suppressed and sug-
gesting scenarios where scattered radiation from electron-
positron plasmas can be understood and used for diag-
nostics.
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