
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Complexified Path Integrals, Exact Saddles, and
Supersymmetry

Alireza Behtash, Gerald V. Dunne, Thomas Schäfer, Tin Sulejmanpasic, and Mithat Ünsal
Phys. Rev. Lett. 116, 011601 — Published  6 January 2016

DOI: 10.1103/PhysRevLett.116.011601

http://dx.doi.org/10.1103/PhysRevLett.116.011601


Complexified path integrals, exact saddles and supersymmetry

Alireza Behtash1,3, Gerald V. Dunne2, Thomas Schäfer1, Tin Sulejmanpasic1, and Mithat Ünsal1,3
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In the context of two illustrative examples from supersymmetric quantum mechanics we show that the semi-
classical analysis of the path integral requires complexification of the configuration space and action, and the
inclusion of complex saddle points, even when the parameters in the action are real. We find new exact complex
saddles, and show that without their contribution the semi-classical expansion is in conflict with basic properties
such as positive-semidefiniteness of the spectrum, and constraints of supersymmetry. Generic saddles are not
only complex, but also possibly multi-valued, and even singular. This is in contrast to instanton solutions, which
are real, smooth, and single-valued. The multi-valuedness of the action can be interpreted as a hidden topological
angle, quantized in units of π in supersymmetric theories. The general ideas also apply to non-supersymmetric
theories.

Introduction: We address the question of how to properly
define the semi-classical expansion of the path integral in
quantum mechanics and quantum field theory. This question
goes beyond the problem of studying the semi-classical ap-
proximation, because the theory of resurgence shows that the
semi-classical expansion encodes perturbative as well as non-
perturbative effects, and may provide a complete definition of
the path integral [1, 2]. We consider a set of examples for
which we show that the path integral measure and action must
be complexified, and that novel complex saddle points appear.
The usefulness of complexification is not surprising from the
point of view of the steepest descent method for ordinary in-
tegration, but important new effects appear in functional inte-
grals. We show that in generic cases complexification is in-
deed essential. Our results go beyond proposals in the litera-
ture to complexify the path integral in cases where coupling
constants are analytically continued away from their physical
values, as described in the work of Witten on Chern-Simons
theory [3], and Harlow, Maltz and Witten on Liouville theory
[4], and is potentially related to the complexification of the
phase space formulation of path integral [5]. Complex sad-
dles were previously studied as a computational tool in quan-
tum mechanics, see e.g. [6–9]. Complex path integrals were
also studied in connection with the sign problem in the Eu-
clidean path integral of QCD and related model systems at fi-
nite chemical potential [10–14]. Here, we demonstrate the ne-
cessity of complexification even for the physical theory with
real couplings. In [15] we show that these complex saddles
have a natural interpretation in terms of thimbles in Picard-
Lefschetz theory.

There are several calculations in field theory that suggest
the importance of complex saddle points. As an example con-
sider N = 1 supersymmetric gluodynamics on R3× S1 with
SUSY preserving boundary conditions. This theory is confin-
ing, and has a non-perturbatively generated bosonic potential
for the Polyakov line. The potential for the Polyakov line can
be computed using bions, molecules of monopole-instantons
[16, 17]. Bions also determine the vacuum energy, with the
conclusion that supersymmetry is unbroken, e.g, for SU(2)
theory, Egr ∝ −e−2Sm − e−2Sm±iπ = 0 where the first is from

magnetic bion and the latter from neutral bion. This calcu-
lation agrees with a calculation based on supersymmetry and
the monopole instanton induced superpotential [18]. A puzzle
concerning this result is that the sum over different bion types
give zero vacuum energy, despite the fact that contribution of
real saddles is universally negative-semidefinite [33].

The calculations in [17, 19] are based on analytic continua-
tion in the coupling constant. Ref. [20] reinterprets the relative
sign between the two different bion types as a hidden topo-
logical angle (HTA), a factor exp(iπ) associated with the rela-
tive phase in the quasi-zero mode Lefschetz thimble, which is
nothing but a direction in field space. This result suggests that
the calculation can be done directly for real values of g, and
that bions arise as exact (non-BPS) saddle point solutions of
the complexified path integral, and furthermore that the HTA
is related to the imaginary part of the complexified action.

SUSY gluodynamics on R3 × S1 is not an isolated case.
Similar phenomena occur in N = 1 SU(2) SUSY QCD [21],
in three-dimensional SUSY gauge theory [22], and in N = 2
SUSY QM [23]. In this paper we make the basic idea precise
in the context of SUSY quantum mechanics.

Formalism and holomorphic Newton’s equation: Consider
the Euclidean quantum mechanical path integral as a sum over
real paths, Z =

∫
Dx(t) exp(− 1

h̄ SE), with SE =
∫

dt( 1
2 ẋ2 +

V (x)). The critical points solve Newton’s equation in the in-
verted potential, d2x

dt2 =+ ∂V
∂x . This leads to the standard multi-

instanton calculus in quantum mechanics. More general sad-
dle points appear in the complexified path integral

Z =
∫

Γ

Dz e−
1
h̄ S[z(t)] , S[z(t)] =

∫
dt
( 1

2 ż2 +V (z)
)
, (1)

where Γ is an integration cycle that has the same dimensional-
ity as the original real path integral. The critical points of the
complexified path integral solve the holomorphic Newton’s
equation in the inverted potential −V (z): δS

δz = 0 ⇒ d2z
dt2 =

+ ∂V
∂z . In terms of real and imaginary parts of the potential,

V (z) =Vr(x,y)+ iVi(x,y), we get

d2x
dt2 =+

∂Vr

∂x
,

d2y
dt2 =−∂Vr

∂y
, (2)
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FIG. 1: Real and complex solutions in the inverted tilted double well
potential. The inverted potential (on the real axis) is shown in black,
the real bounce and associated critical and turning points are shown
in red, and the pair of complex bions and turning and critical points
are blue. The blue points correspond to zcr

1 and zT ,z∗T in (6). Note
that the motion takes place in the real and imaginary parts of the
complex potential, as explained in the text.

where we have used the Cauchy-Riemann equations ∂xVr =
∂yVi, and ∂yVr = −∂xVi. An important aspect of (2) is that it
does not describe an ordinary two-dimensional classical me-
chanical system: the holomorphic classical mechanics is not
the same as the motion of a particle in the two-dimensional
inverted potential −Vr(x,y). Instead of the usual Newton
equations with force ~∇Vr(x,y), the force in the x-direction is
due to ∇xVr(x,y) while the force in the y-direction is due to
−∇yVr(x,y). This has interesting consequences.

Supersymmetric quantum mechanics: Consider supersym-
metric quantum mechanics with the superpotential W (x)

S =
∫

dt
( 1

2 ẋ
2 + 1

2 (W
′)2 +[ψ̄ψ̇+ pW ′′ψ̄ψ]

)
, (3)

corresponding to p = 1. The parameter p will be used to
deform the theory away from the supersymmetric point [9].
We choose W (x) with more than one critical point, so that
there will be real instantons. By projecting to fermion number
eigenstates one obtains a pair of Hamiltonians H± [24]:

H± = 1
2 p̂

2 +V±(x) , V±(x) = 1
2 (W

′(x))2± p
2 W ′′(x) . (4)

In the following we consider superpotentials of the form
W (x) = 1

gW (
√

gx), and rescale x =
√

gx. Then the Euclidean
action takes the form SE = 1

g
∫

dt( 1
2 ẋ2+V±(x)). We work with

the bosonized description (4). Note that compared to the orig-
inal bosonic potential 1

2 (W
′)2 the bosonized theory contains

an O(g) term that arises from integrating out the fermions.
The quantum modified holomorphic equations of motion in
the inverted potential −V+(z) is

d2z
dt2 =W ′(z)W ′′(z)+

pg
2

W ′′′(z) . (5)
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FIG. 2: Complex bion solution in supersymmetric quantum mechan-
ics with a double well potential. The black and red lines show the
real and imaginary part of the solution for pg = 1 · 10−6. The char-
acteristic size of the solution is Re[2t0]' 1

2 log 16
pg . For larger values

of pg the two tunneling event merge.

Double well potential: Consider W (x) = x3/3− x, so that
V (x) is an asymmetric double well potential with an O(g)
“tilt”. The ground state energy of the system is zero to all or-
ders in perturbation theory, but non-perturbatively supersym-
metry is spontaneously broken and the ground state energy
is non-zero and positive [24]. Note that the positivity of the
ground state energy is a consequence of the SUSY algebra,
H = 1

2{Q, Q̄}, where Q and Q̄ are the SUSY generators.
In the original formulation (3) this can be understood as the

contribution from approximate instanton-anti-instanton solu-
tions of the bosonic potential 1

2 (W
′)2 [9]. In the bosonized

version we seek classical solutions in the inverted potential
−V+. However, the real equations of motion in the inverted
potential have no finite action configurations except for the
trivial perturbative saddle, and an exact (real) bounce solu-
tion. But this bounce is related to the false vacuum and is
not directly relevant for ground state properties, which are de-
termined by saddles starting at the global maximum of the
inverted potential. But the real motion of a classical particle
starting at such a global maximum is unbounded, and has in-
finite action.

On the other hand, the holomorphic Newton’s equation (5)
does support finite action solutions starting from the global
maximum. There are exact finite action complex solutions
that start at the global maximum of the inverted potential and
bounce back from one of the two complex turning points,
whose real part is located near the top of the local maximum,
see Fig. 1. We refer to this as the “complex bion” solution:

zcb(t) = zcr
1 −

zcr
1 − zT

2
coth

(
ωcbt0

2

)[
tanh

(
ωcb(t + t0)

2

)
− tanh

(
ωcb(t− t0)

2

)]
, (6)

where zcb(±∞) = zcr
1 is the global maximum of the inverted

potential, and zT =−zcr
1 ± i

√
pg/(−zcr

1 ) are the complex turn-
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ing points. ωcb =
√

V ′′(zcr
1 ) is the natural frequency at zcr

1 , and
the complex parameter t0 is

t0 =
2

ωcb
arccosh

[
3ω2

cb

ω2
cb−V ′′(zcr

1 )

]1/2

≈ 1
2ωcb

ln
(
− 16

pg

)
(7)

where Re[2t0] is the complex bion size.
It is straightforward to verify that (6) is a solution to the

holomorphic equation of motion. The solution is shown in
Fig. 2. The real part resembles an instanton-anti-instanton pair
with size ln 16

pg , and the action is

Scb '
(

8
3g

+ p ln
16
pg

+ . . .

)
± i pπ , (8)

whose real part is slightly larger than two-instanton action,
2SI . The sign of the imaginary part ImScb =±pπ corresponds
to the choice between two complex conjugate saddles.

The imaginary part of the action is defined modulo 2π, so
the choice between the two complex conjugate saddles does
not lead to an ambiguity in the amplitude for p = 1. However,
the factor eiπ is related to a hidden topological angle which is
crucial to obtain the correct sign for the ground state energy.
In the semi-classical limit the ground state can be understood
as a dilute gas of complex bions:

Egs ∼−e±iπe−2SI ∼+e−2SI > 0 , (9)

in agreement with known results [9, 25]. The bosonized de-
scription makes the most crucial point clear. From a semi-
classical view point, the positivity of the ground state energy
and hence, consistency with the supersymmetry algebra owes
its existence to the complexity of the exact solution, and to the
hidden topological angle associated with it.

This complex bion solution can also be constructed by an-
alytic continuation of the real bounce solution. To this end,
we consider analytic continuation in the parameter p→ peiθ,
with corresponding potential

Vθ(x) = 1
2 (W

′(x))2 + peiθg
2 W ′′(x) . (10)

Only θ = 0,π are physical theories, but the continuous θ pa-
rameter is useful in order to understand the relation between
different saddle points. The regular bounce solution starts at
the local (smaller) maximum of the inverted potential, and
gets reflected at a turning point below the global (larger) max-
imum. This solution is described by an ordinary elliptic inte-
gral. The analytic continuation, p→ peiθ, produces a complex
solution with finite action solution at any θ, and can be con-
tinued all the way to θ = π, where the local and the global
maxima of the inverted potential are interchanged. The solu-
tion comes back to itself after 4π rotation, it has order 2 mon-
odromy. At θ =±π we obtain exactly the complex conjugate
pair of “complex bion” solutions (6).

Quantization of hidden topological angle in supersymmet-
ric theory: In supersymmetric theories, since ground state
energy is zero to all orders in perturbation theory, to avoid

an ambiguity in the ground state energy, it is essential that
the imaginary part of the complex action is a multiple of π.
Here, we will give a simple proof of this fact for the dou-
ble well potential, which extends easily to the periodic po-
tential. There are two complex bion solutions with complex
conjugate turning points, and complex conjugate actions. This
means that the imaginary part of the action can be computed
from the difference of the action of the two complex bions,
ImScb =± 1

2i (S
1
cb−S2

cb). We also note that the action is com-
puted as a line integral of the quantity

√
2(E +V ) along the

branch cut that connects the turning points of the solution.
Here, E is the energy of the solution in the inverted poten-
tial. This implies that the imaginary part of the action can be
written as

ImScb =
1
2g

∮
C

dz
√

2E +(W ′)2 + pgW ′′ , (11)

where the contour C, which arises from first going around the
branch cut connecting zcr

1 and zT , and then around the cut con-
necting zcr

1 and z∗T , encircles all the points zcr
1 ,zT ,z∗T . This im-

plies that we can deform the contour into a large circle in the
complex z-plane. If W grows as a positive power of z we have
(W ′)2�W ′′, so that the integrand can be expanded in powers
of E/(W ′)2 and W ′′/(W ′)2. The first term is a total deriva-
tive, and the second term vanishes because its residue is zero.
Terms of second order and higher in 1/(W ′) vanish faster than
1/z as z→ ∞. The only contribution comes from

ImScb =
p
4

∮
dz

W ′′

W ′
=

p
2

∮ dW ′

W ′
= ipπ , (12)

where we used the fact W ′ ∼ z2 winds twice as z encircles the
critical points. This proves the quantization of the HTA in the
supersymmetric p = 1 limit.

For the p 6= 1 non-supersymmetric deformation of the the-
ory, the perturbative ground state energy does not vanish any-
more, but the energy spectrum must still be unambiguous. In
that case, we show in [15] that the ambiguity inherent to the
Borel resummation of perturbation theory cancels exactly the
two-fold ambiguous complex bion amplitude, as an explicit
illustration of resurgence.

Periodic potential: Now consider the superpotential W (x) =
4cos(x/2). In this system supersymmetry is unbroken [24].
There are two degenerate ground states, one bosonic and one
fermionic, both with vanishing ground state energy. After the
fermion is integrated out we obtain the bosonic potential

V±(x) = 2sin2(x/2)± pg
2

cos(x/2) . (13)

The inverted potential, Fig. 3, has global maxima at x = 4nπ,
and local maxima at x = (4n+ 2)π. (The potential has pe-
riod 4π). There is an exact real bounce solution starting at
the local maximum, and bouncing from a real turning point,
but again this is not directly relevant for ground state proper-
ties. Now we find two types of exact bion solutions, shown
in Fig. 3. The first is a “real bion”, connecting neighboring



4

FIG. 3: Real and complex solutions in the quantum modified in-
verted Sine-Gordon potential. The inverted potential (on the real
axis) is shown in black, the real bounce and associated critical and
turning points are shown in red, the pair of complex bions and asso-
ciated turning as well as critical points are blue, and the real bion is
shown in green. In order to smoothen the (singular) complex bion
the solution is plotted at θ = 0.95π. The singular limit is shown as
the dashed line. Note that the vacuum properties are governed by the
real and complex bion solutions.

global maxima, say at x = 0 and x = 4π. It has the form of
an instanton-instanton solution, and as such has no analogue
in the double-well case. There is also a complex bion solution
that starts from a global maximum of the inverted potential,
and is reflected from a complex turning point, with real part
near the local maximum. This solution can be found directly
or by analytic continuation from the real bounce, p→ peiθ,
and leads to an exact finite action complex saddle:

zcb(t) = 2π±4
(

arctane−ωcb(t−t0)+ arctaneωcb(t+t0)
)
, (14)

where ωcb =
√

V ′′(0) =
√

1+ pg
8 . The complex parameter

t0 ' 1
2ωcb

ln
(
− 32

pg

)
, where Re[2t0] is the complex bion size.

The action is

Scb '
(

16
g

+ p ln
32
pg

+ . . .

)
± i pπ . (15)

The complex bion has the form of a complex instanton/anti-
instanton molecule. An interesting new feature of this solution
is that it is singular at t =±t0, even though the action is finite.
Physically this is because the real part of the holomorphic po-
tential has ridges along the y direction, and the holomorphic
equations of motion allow the particle to roll up (notice rel-
ative signs in (2)) along one ridge and then jump to the next
ridge at infinity before rolling back again.

The analytic continuation in θ smooths this singularity, and
the solution is correspondingly multivalued as θ→ π± ε: see
Fig. 4. As θ→ π the real part of zcb(t) has a discontinuity,
and the imaginary part diverges. The action is finite, because
the divergence in the action integral due to the singular be-
havior in Rez(t) and Imz(t) cancel. Fig. 5 shows the real and

-t0 t00
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π

Re[z]

2π

0

3

Im[z]

6

t

θ=0π

-t0 t00
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FIG. 4: Complex solutions in the quantum modified Sine-Gordon
potential with pg = 2 · 10−5. θ = 0 correspond to the real bounce
solution. At θ = π−, the real bounce turns into a complex bion. The
characteristic size of the solution is Re[2t0]≈ ln 32

pg .
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FIG. 5: Action of the complex saddle solution in the Sine-Gordon
potential as a function of θ for pg = 0.1. θ = 0 corresponds to the
real bounce, and θ = π is the complex bion, a multi-valued singular
solution.

imaginary parts of the action as a function of the θ parameter.

In the semi-classical limit the ground state can be described
as a dilute gas of complex and real bions, with energy

Egs ∼−e−Scb − e−Srb =−e±iπe−2Srb − e−2Srb = 0 , (16)

consistent with the requirement of supersymmetry. The non-
inclusion of the multi-valued saddle would result in a negative
ground state energy and a conflict with the constraints of su-
persymmetry algebra. This proves that in order for the semi-
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classical analysis to be consistent with the supersymmetry al-
gebra, it is essential to include singular, multi-valued complex
bion solution. This resolves a deep puzzle raised in [4].

Conclusions: We have presented two examples that demon-
strate the need to include complex, and even singular and
multi-valued, saddle point solutions of the path integral. We
obtained exact finite action saddle points of the complexified
path integral in supersymmetric quantum mechanics with a
double well and Sine-Gordon potential. In both cases these
new complex bion configurations are essential in order to ob-
tain agreement with known results and the requirements of
supersymmetry. This phenomenon is not restricted to quan-
tum mechanics: analogous effects occur in several field the-
ories, such as sigma models with fermions [2, 26–29] SUSY
gluodynamics and QCD(adj) on R3×S1, N = 1 [16, 30, 31],
SU(2) SUSY QCD with one quark flavor [21, 32], and three
dimensional SUSY N = 2 gauge theory [22]. Clearly, it is
of interest to study these field theories, and ultimately QCD,
using complexified path integrals.
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arXiv:1205.0290 [hep-th] .

[18] N. M. Davies, T. J. Hollowood, V. V. Khoze, and M. P. Mattis,
Nucl.Phys. B559, 123 (1999), arXiv:hep-th/9905015 [hep-th] .
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