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We suggest and demonstrate a protocol which suppresses the low-frequency dephasing by qubit
motion, i.e., transfer of the logical qubit of information in a system of n ≥ 2 physical qubits. The
protocol requires only the nearest-neighbor coupling and is applicable to different qubit structures.
Our analysis of its effectiveness against noises with arbitrary correlations, together with experiments
using up to three superconducting qubits, show that for the realistic uncorrelated noises, qubit
motion increases the dephasing time of the logical qubit as

√
n. In general, the protocol provides a

diagnostic tool for measurements of the noise correlations.

Development of superconducting qubits [1–7] has
reached the stage when it is interesting to discuss possible
architectures of the quantum information processing cir-
cuits. The common feature of any quantum computation
process of even moderate complexity is the requirement
of information transfer between different elements of the
qubit circuit. The most straightforward way of achieving
this transfer is to physically move the quantum states
representing the qubits of information along the circuit.
In the case of superconducting qubits, potential for such
a direct motion of logical qubits is offered by the so-
called nSQUIDs [8, 9], but operation of these circuits in
the quantum regime [10] still needs to be demonstrated
experimentally. Another method of transferring logical
qubits between different physical qubits, already devel-
oped in experiments and adopted in this work, is based on
creating controlled qubit-qubit interaction through cou-
pling to a common resonator bus [5, 11–13]. The goal
of this work is to demonstrate that, in addition to its
main function, transfer of information between different
circuit elements designed to perform different functions,
has an additional notable benefit: suppression of the low-
frequency dephasing. We also show that it can be used to
measure the noise correlations and, in this way, diagnose
the primary sources of the noises.

The basic mechanism of the noise suppression by qubit
motion relies on the fact that the low-frequency noise is
typically produced by fluctuators - see, e.g., [14, 15], in
the form of impurity charges or magnetic moments, lo-
calized in each individual physical qubit, and therefore, is
not correlated among them. Motion of a logical qubit be-
tween different physical qubits limits the correlation time
of the effective noise seen by this qubit, and therefore sup-
presses its decoherence rate. This effect is qualitatively
similar to the motional narrowing of the NMR lines [16],
with the main difference that it is based on the controlled
transfer of the qubit state, not random thermal motion as
in NMR. Our protocol also has some similarities to the
dynamic decoupling schemes - see, e.g., [17, 18], where
the qubit-noise interaction is suppressed by changing the
qubit state in the effectively constant noise, while the

qubit motion achieves this by changing noise seen by the
moving qubit state. Also, since the effectiveness of this
mechanism is sensitive to the noise correlations not only
in time, but in space, it can be used to investigate the
distribution of the primary sources of noises in quantum
circuits, promising a fast and reliable noise diagnostic
tool and, ultimately, improving the circuit performance.
Quantitatively, we start with the basic model of de-

phasing in a system of n physical qubits, where each
qubit is coupled to a source of Gaussian fluctuations ξj(t),
j = 1, ..., n, of the energy difference between the compu-
tational basis states:

Hdec = −1

2

n
∑

j=1

σz
j ξj(t) ,

〈ξj(0)ξk(t)〉 =

∫

dω

2π
Sj,k(ω)e

−iωt. (1)

Here σz
j is the z Pauli matrix of the jth qubit, Sj,j(ω) ≡

Sj(ω) – spectral density of noise ξj(t) in the jth qubit,
the terms Sj,k(ω), with j 6= k, account for the noise cor-
relations in different qubits, and we set h̄ = 1. The qubits
are assumed to be free, i.e., (1) is the only part of the
system Hamiltonian that depends on the qubit variables.
If a logical qubit, |Ψ〉 = α|0〉 + β|1〉, is prepared at

time t = 0 as an initial state of the jth physical qubit
and is kept there for a period τ , it will decohere due to
the noise ξj(t). This decoherence process can be charac-
terized quantitatively by the function F (τ), defined as

F (τ) =
σj(τ)

σj(0)
, σj(τ) = Tr{σ+

j (τ)ρ} , (2)

where ρ is the initial density matrix of the system, which
consists of the qubit part and the part ρenv describing
the noise source:

ρ = |Ψ〉〈Ψ|j ⊗
∏

k 6=j

|0〉〈0|k ⊗ ρenv .

Time dependence of the raising Pauli matrix, σ+
j = (σx

j +
iσy

j )/2, of the jth qubit is governed by the Heisenberg



2

equation of motion that follows from the Hamiltonian
(1): σ̇+

j (t) = −iξj(t)σ
+
j (t), and gives, as usual,

F (τ) = 〈T exp{−i

∫ τ

0

ξj(t)dt}〉

= exp{−
∫ τ

0

dt

∫ t

0

dt′〈ξj(t)ξj(t′)〉} . (3)

Here T denotes the time-ordering operator, and 〈...〉 –
averaging over the noise source ρenv. Experimentally,
the function F (τ) is obtained by measuring the Ramsey
fringes.
On the other hand, we can arrange the situation, when

the logical qubit |Ψ〉, instead of staying just in one phys-
ical qubit for the entire time interval τ , is transferred
successively from qubit 1 to qubit n spending the time
τ/n in each of them, while the transfer processes them-
selves are done much faster than τ/n. Such transfers can
be achieved, e.g., by applying SWAP gates to the suc-
cessive pairs of physical qubits. Then, if the transfers
are done accurately, so that the dephasing during them
is negligible, the decoherence of the logical qubit |Ψ〉 in
the total time τ is

F (τ) = exp
{

−
n
∑

j=1

∫ τ/n

0

dt

∫ t

0

dt′〈ξj(t)ξj(t′)〉 (4)

−
∑

j<k

∫ τ/n

0

dtdt′
〈

ξk

( τ

n
(k − j) + t

)

ξj(t
′)
〉}

.

If the noises are low-frequency and uncorrelated at dif-
ferent qubits, decoherence is suppressed with increasing
number n of the physical qubits. Indeed, in this regime,
it is appropriate to neglect the quantum part of the noise
and the second sum in Eq. (4) which reduces to

F (τ) = exp{− 1

π

∫

dω
sin2(ωτ/2n)

ω2

n
∑

j=1

Sj(ω)} . (5)

The low-frequency dephasing is obtained then by expand-
ing sine in ω and keeping the first term:

F (τ) = exp{− τ2

2n2

n
∑

j=1

W 2
j } , W 2

j =

∫ ωh

ωl

dω

2π
Sj(ω) . (6)

For the experimentally relevant 1/f noise, Sj(ω) =
Aj/|ω|, the last approximation applies directly if the
high-frequency cutoff of the noise ωh satisfies the con-
dition τ/n ≪ 1/ωh. As shown in the Supplementary
Material [19], even in the opposite regime, there are only
weak logarithmic correction to scaling of the dephasing
time with n, and the main conclusion remains the same.
The low-frequency cutoff ωl can be estimated as inverse of
the time of the experiment, and W 2

j = (Aj/π) ln(ωh/ωl).
If all physical qubits have the same decoherence proper-
ties, Wj = W , we can rewrite Eq. (5) as

F (τ) = e−(τ/τd)
2

, τd =
√
2n/W , (7)
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FIG. 1: (color online) (a) Device schematic showing three phase

qubits capacitively coupled to a central resonator. (b) The exper-

imental sequence of the Ramsey fringe measurement for a single

qubit. (c) Experimental sequences for relaying the logical qubit

state between two physical qubits (top) and among three physical

qubits (bottom). The logical qubit moves along solid lines. The re-

lay sequence starts with a R
π/2
x̂ rotation on the first qubit to create

the logical qubit state in the x− y plane of the Bloch sphere, i.e.,

|Ψ〉 = |0〉 − i|1〉. Relaying the logical qubit state to the next qubit

is done by two successive qubit-resonator iSWAP gates that takes

32 ns in total (symbolized by the double crossed arrows). Finally a

R
π/2
α̂ rotation is applied to the last physical qubit in the sequence

to bring the logical qubit state to the z-axis of the Bloch sphere for

measuring the |1〉-state probability of this qubit, P1. Here α̂ refers

to the effective axis that rotates in the x − y plane after remov-

ing the dynamical phase, i.e., α̂ = cos(ωRτ)x̂ + sin(ωRτ)ŷ, where

ωR/2π is adjusted to around 25 MHz in the experiment.

and see that the dephasing time τd of the moving qubit
increases in comparison to the stationary qubit as

√
n.

If the noises at different physical qubits are correlated,
one needs to take into account both sums in Eq. (4).
In this case, under the same assumptions as above, the
dephasing time in Eq. (7) can be written as

1

τ2d
=

1

2n2

n
∑

k,j=1

Rk,j =
W 2

2n2

[

n+ 2
∑

j<k

rk,j

]

, (8)

where Rk,j ≡
∫

dωSk,j(ω)/2π. The second equality as-
sumes that all qubits have the same noises Sj,j(ω) =
S(ω), with the coefficients rk,j defined in this case by the
relation Sk,j(ω) = rk,jS(ω). They describe the degree of
noise correlations between the kth and the jth qubit and
have the property |rk,j | ≤ 1, with rk,j = 1 corresponding
to full correlations, and rk,j = −1 describing full anticor-
relations. Equation (8) shows that if all noises are fully
correlated, then τd =

√
2/W , and the qubit motion does

not produce any suppression of dephasing.
To test experimentally the mechanism of dephasing

suppression by qubit motion as discussed above, we per-
form the Ramsey fringe experiments (Fig. 1(b))[20] using
up to three superconducting qubits, among which the ini-
tial logical qubit state |Ψ〉 = |0〉 − i|1〉 (here and below
we neglect the normalization constant) is relayed and its
phase information is probed after the total relay time τ .
We use two types of superconducting circuits in which
dephasing noises differ very much in magnitude: one fea-
tures three phase qubits, each capacitively coupled to a
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FIG. 2: (color online) The Ramsey fringe experimental data for

sequences shown in Fig. 1. Red lines are fits according to Eq. (10).

T ∗
2

for single qubit can be directly compared with τd for multiple

qubits. Statistical errors, from the measured probability spread of

∼2%, are omitted for display clarity, but are used to estimate the

standard deviations of T ∗
2

and τd.

common resonator [21, 22] (Fig. 1(a)), and the other one
features two Xmon qubits with much reduced dephasing
noises, each as well coupled capacitively to a common
resonator. The Hamiltonian of these quantum circuits is

H = −1

2

n
∑

j=1

ωq
j σ

z
j + ωr a†a+

n
∑

j=1

λj (aσ
+
j + a†σ−

j ) , (9)

where the resonator frequency ωr and the qubit-resonator
coupling strength λj (≡ λ under the homogeneous con-
dition and ≪ ωr, ωq

j ) are fixed by the circuit design, and

a†,a are the creation/annihilation operators of the res-
onator field. The qubit frequencies ωq

j are individually
tunable, and n (= 1, 2, or 3) is the total number of phys-
ical qubits involved in each experimental sequence.

For the phase qubit circuit, ωr/2π = 6.22 GHz and
λ/2π ≈ 15.5 MHz. The operation frequencies of qubits
q1, q2, and q3 are chosen at 5.99, 6.04, and 6.06 GHz,
respectively, for their dephasing times T ∗

2 to be about
the same. Corresponding energy relaxation times T1 are
512 ± 6, 538 ± 6, and 488 ± 4 ns. The dephasing times
T ∗
2 s are 173 ± 2, 177 ± 1, and 176 ± 2 ns by fitting to

ln[P1(τ)] ∝ −τ/2T1 − (τ/T ∗
2 )

2, where P1 is the |1〉-state
probability in the Ramsey fringe experiment [23]. Since
three qubits have similar T ∗

2 values, we expect that the
noise power spectral densities Sj(ω) (j = 1, 2, and 3),

which characterize the flux-noise environments of these
qubits, are approximately at the same level [23–25].

At its operation frequency, each qubit is effectively de-
coupled from the resonator. If qubit q1 is in |0〉−i|1〉 and
resonator r is in |0〉, we can turn on the qubit-resonator
interaction by rapidly matching the qubit frequency to
that of the resonator for a controlled amount of time, im-
plementing an iSWAP gate [26] to transfer the state from
q1 to resonator r, i.e., (|0〉−i|1〉)q1|0〉r → |0〉q1(|0〉−|1〉)r .
Immediately after the first iSWAP gate, we bring qubit
q2, originally in |0〉, on resonance with the resonator r for
another iSWAP gate. As such, other than a phase fac-
tor, we effectively relay the logical qubit state between
the two qubits, i.e., (|0〉−i|1〉)q1|0〉q2 → |0〉q1(|0〉+i|1〉)q2
[22]. For the phase qubit circuit, an iSWAP gate takes
about 16 ns and the total time for transferring the state
from one qubit to the other qubit is about 32 ns.

We measure the Ramsey fringe of a logical qubit which
spends equal amount of time in each of the n ≥ 2 physical
qubits. The sequences are illustrated in Fig. 1(c). The
obtained Ramsey fringe is fitted according to [23]

P1(τ) = A exp

[

− τ

2T ave
1

− τ2

τ2d

]

cos(ωRτ +B) + C, (10)

where T ave
1 is fixed as the average of all qubits involved

and τd is the effective dephasing time for the logical qubit
as obtained from the fit (so are the constants A, B, C,
and ωR). Representative experimental data and fitting
curves are shown in Fig. 2.

Controlled motion of the logical qubit is attempted
under various experimental conditions. τd values ob-
tained using different experimental sequences and differ-
ent physical qubit combinations are listed in the Supple-
mentary Material [19]. The Ramsey fringe measurements
using two (three) phase qubits show that the dephasing
times τd are extended to about 244.0±3.1 ns (297.2±5.5
ns), averaged a gain by a factor of 1.392 = 0.984

√
2

(1.695 = 0.979
√
3) compared with those from the single-

qubit measurements, 175.3 ± 2.3 ns. As expected from
Eq. (5), the dephasing time τd of the logical qubit scales
very well with the square root of the number of physical
qubits,

√
n. The similar scaling is also observed using two

Xmon qubits, where the single-qubit T ∗
2 values are about

1 µs, achieving a gain of 1.405 = 0.993
√
2 (Ramsey fringe

data not shown). Our result clearly demonstrates that
dephasing caused by uncorrelated low-frequency noises
can be reduced by a factor of

√
n by moving the logical

qubit along an array of n ≥ 2 physical qubits.

In general, degree of the noise suppression by qubit
motion method depends on the noise correlations. If the
noises Sj(ω), j = 1 and 2, for the two qubits are the
same, we can express Eq. (8) as

1

τ2d
=

W 2

4
(1 + rc) , τd =

√

2

1 + rc
T ∗
2 , (11)
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FIG. 3: (a) The 2-qubit Ramsey fringe results under artifi-
cial noises with different correlations rc as indicated. Dots
are experimental data and lines are fits. Fitted τE

d values are
213±4, 251±4, 281±7, 345±6, and 485±8 ns from top to bot-
tom. (b) (1/τE

d )2 − (1/τ I
d )

2 versus rc (black squares), where
τ I
d is the dephasing time from the 2-qubit Ramsey fringe ex-
periment under no artificial noise. Error bars are estimated
based on uncertainties of τE

d and τ I
d . The numerical result

(red dots) is obtained by solving the Schrodinger-Langevin
equation [29] with a time-dependent Hamiltonian, while the
swap non-ideality is accounted for using the Lindblad master
equation. Line is a guide to the eye.

where T ∗
2 =

√
2/W and rc ≡ r1,2. The monotonous de-

pendence of τd on the correlation coefficient rc of the two-
qubit noises provides a much needed tool for measuring
noise correlations. Since the Ramsey fringe measurement
is much faster than the conventional two-point correla-
tion measurement [24, 27], Eq. (11) may provide a fast
method for identifying the primary sources of noises in
complex quantum circuits.

We experimentally emulate the monotonous depen-
dence of τd on rc in Eq. (11) using two Xmon qubits,
where the much reduced intrinsic dephasing noises make
it easier to inject controllable noises [28]. Here the in-
trinsic noises are any noises associated with the device
or measurement setup, in contrast to the extrinsic ones
that specifically refer to our controlled noises. We first
set the operation frequencies of the two Xmon qubits,
exposing them to the same level of intrinsic noise SI

j (ω),
j = 1 and 2. We then apply strong low-frequency noises,
digitally synthesized with an adjustable correlation co-
efficient rc, to the two qubits so that their dephasing

rates are dominated by these extrinsic noises. It is ver-
ified that for each qubit T ∗

2 is reduced to about 220 ns
due to the combination of the noise powers SI

j (ω) and

SE
j (ω), j = 1 or 2, where SE

j (ω) are the synthesized
noise power spectral densities (see Supplementary Mate-
rial [19]). Synthesized noises are simultaneously applied
during the 2-qubit Ramsey fringe experiments. Resulted
Ramsey fringes shown in Fig. 3(a) can be used to esti-
mate τEd , the logic-qubit dephasing time determined by
both SE

j (ω) and SI
j (ω), j = 1 and 2. It is observed

that τEd increases monotonically when the correlation
coefficient rc changes from 1 to −1, in agreement with
Eq. (11). In Fig. 3(b), we plot (1/τEd )2 − (1/τId )

2 versus
rc (black squares with error bars), where τId is the logic-
qubit dephasing time due only to SI

j (ω), j = 1 and 2,
as measured with the 2-qubit Ramsey sequence without
extrinsic noises. Also shown in Fig. 3(b) are the numeri-
cal simulation results. The experimental and simulation
data are slightly different from the prediction by Eq. (11),
likely due to the fact that experimentally synthesized ex-
trinsic noises, limited by hardware resources, extend in
frequency only down to 10 kHz.

To summarize, we propose and demonstrate a new
scheme of suppression of the low-frequency dephasing
of logical qubit based on its motion along an array
of n ≥ 2 physical qubits. The scheme is particular
suited to quantum circuits which employ information
transfer for their operation. Potential advantages of our
approach include the possibility to make the physical
qubit overhead insignificant by applying it to larger
number of logical qubits. An array of n physical qubits
can support the transfer of n − 1 independent logical
qubits, with the dephasing time of all increased by
motion as

√
n. It also should be straightforward to

incorporate qubit motion into quantum gate operations
on entangled logical qubits. Our results thus open a new
venue for gaining insight into the low-frequency noises
in complex quantum information processing circuits and
for improving their performance.
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