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It is a recent realization that many of the concepts and tools of causal discovery in machine learn-
ing are highly relevant to problems in quantum information, in particular quantum nonlocality. The
crucial ingredient in the connection between both fields is the mathematical theory of causality,
allowing for the representation of arbitrary causal structures and providing a rigorous tool to rea-
son about probabilistic causation. Indeed, Bell’s theorem concerns a very particular kind of causal
structures and Bell inequalities are a special case of linear constraints following from such models.
It is thus natural to look for generalizations involving more complex Bell scenarios. The problem,
however, relies on the fact that such generalized scenarios are characterized by polynomial Bell in-
equalities and no current method is available to derive them beyond very simple cases. In this work,
we make a significant step in that direction, providing a new, general and conceptually clear method
for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our
construction can be used to allow for relaxations of causal constraints and naturally gives rise to a
notion of nonsignalling in generalized Bell networks.

Bell’s theorem [1] demonstrates that our classical con-
ceptions of causal relations must be taken with care, as
they fail to commit with the results obtained in quan-
tum experiments performed by distant parties, the phe-
nomenon of quantum nonlocality. Remarkably, in or-
der to prove the emergence of nonlocal correlations, it
is sufficient to consider a very simple causal structure,
where due to the distance between the parties it is nat-
ural to assume, at least classically, that the correlations
between them are mediated via causal influences orig-
inating in a common local hidden variable (LHV). Yet,
quantum theory predicts that the correlations obtained
via local measurements performed on distant entangled
particles are incompatible with any classical theory ful-
filling such a natural causal description.

Recently, it has been realized that one can signifi-
cantly expand the notion of quantum nonlocality by
considering more complex causal structures going be-
yond the usual LHV models [2–10]. At the basis of
this new research program lies the mathematical theory
of causality [11, 12] that provides a rigourous and sys-
tematic way to reason about causal relations and causal
structures. This realization has already lead to new in-
sights about the tension between quantum mechanics
and causality [6, 13–16] and reveals a much richer struc-
ture of quantum correlations than the one we could
naively presume from Bell’s paradigmatic causal struc-
ture alone [2–9].

As an illustration of such generalized scenarios and
its applications, consider an entanglement swapping
experiment [17]. Starting with two independent pairs
of entangled particles and jointly measuring one parti-
cle from each pair, we can generate entanglement and
nonlocal correlations between the two remaining par-
ticles, even though they have never interacted. In this

case, to contrast the quantum and classical descriptions
we have to consider a finer structure for the underlying
causal model that should now be described by uncor-
related LHVs and thus introduces additional structure
to the set of allowed correlations [3]. Generally, since
models with many independent sources are more re-
strictive to classical explanations, they offer a novel new
route to decrease the requirements on experimental im-
plementations of Bell tests [3, 4, 18]. In fact, as shown in
[19, 20], arranging multiple copies of an entangled (but
local at the single-copy level) states into complex net-
works may reveal its nonlocality. Furthermore, scenar-
ios with many independent sources of quantum states
are ubiquitous in quantum information, e.g., quantum
networks [21, 22] and quantum repeaters [23]. Thus,
understanding generalized Bell scenarios is not only
of fundamental interest but also of high practical rel-
evance.

Within that context, the basic question to be solved
is how to derive Bell inequalities for general Bell
scenarios, whose the classical causal description will
be named here as generalized local hidden variables
(GLHV) models. Bell inequalities play a fundamental
role in study of nonlocality, since it is via their viola-
tion that we can witness the nonlocal character of ex-
perimental data. Unfortunately, opposed to usual Bell
scenarios, GLHV models imply a non-convex region –
characterized by polynomial Bell inequalities – of corre-
lations that are compatible with it. Given this difficulty,
only sparse results have been obtained for GLHV mod-
els, either using coarse-grained information [6, 8, 24–
26] or considering particular scenarios and techniques
of limited application [3, 4, 27, 28]. In causal inference,
techniques from algebraic geometry (AG) were shown
to provide, in principle, a general solution to this prob-
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FIG. 1. DAG representation of causal structures. (a) Bipartite
LHV model. (b) Tripartite GLHV model with 2 independent
hidden variables representing an entanglement swapping ex-
periment [3, 17]. (c) Fourpartite GLHV model with 2 hidden
variables.

lem [29]. Unfortunately, given their double exponential
computational complexity [30–33], their application to
Bell scenarios is intractable already for the simplest pos-
sible models [34, 35]. Even the most computationally
amenable tools from AG [34, 36, 37] are unable to char-
acterize structures beyond 5 binary variables [34]. It is
clear that in spite of the existence of general purpose
methods, they are far from delivering a relevant and
practical tool for the study of the emergence of nonlo-
cality in complex causal structures.

In this paper we propose a new and general method
for deriving polynomial inequalities in generalized Bell
scenarios. As opposed to other available methods re-
quiring a high level of expertise in algebraic geometry
[29, 34], our approach involves basic concepts from con-
vex optimization and thus provides a more accessible
tool for the analytic derivation of inequalities in a va-
riety of scenarios. Moreover, in spite of the intrinsic
high computational complexity of the problem, our ap-
proach is computationally more accessible than previ-
ous attempts. Finally, our construction allows for relax-
ations of causal constraints and, as shown in the Sup-
plemental Material [38], naturally introduces a notion
of nonsignalling [45] in generalized scenarios.

Bell inequalities, causal structures and algebraic
geometry.— Bell scenarios beyond LHV models
can be represented via the graphical notation of
directed acyclic graphs (DAG), where nodes stand
for variables and directed arrows represent causal
relations [11, 12]. LHV models correspond to DAGs
with a single hidden variable. For instance, the DAG
in Fig. 1(a) represents the usual causal structure from

a Bell experiment, where a common source produces
particles emitted to two observers that at each round
of the experiment measure a given observable, labelled
by X and Y respectively, obtaining outcomes A and B.
GLHV models have a similar physical intuition, the
difference being that they are represented by DAGs
with n ≥ 2 independent hidden variables (Fig. 1(b)-(c)).
The causal relations implied by DAGs are captured
by the (conditional) independencies (CI) implied by
the graph [11]. For instance, for the LHV model in
Fig. 1(a) it follows that p(x, y, λ) = p(x)p(y)p(λ) and
p(a|x, y, λ) = p(a|x, λ) (similarly to b).

To contrast the difference in the geometry of correla-
tions of LHV and GLHV models, consider the models
in Fig. 1(a-b). From the CIs implied by the DAG in
Fig. 1(a) it follows that any observable data p(a, b|x, y)
compatible with a LHV model can be decomposed as

p(a, b|x, y) = ∑
λ

p(a|x, λ)p(b|y, λ)p(λ). (1)

That is, any LHV distribution lies inside the convex
set defined by (1), the correlation polytope C [46, 47].
In this geometric picture, (linear) Bell inequalities are
nothing else than facets of C. Given the list of the ex-
tremal points of C, finding its facets amounts to dualize
the description of the polytope, the facet enumeration
problem.

In turn, from the DAG in Fig. 1(b), it follows that any
GLHV model compatible with it can be written as

p(a, b, c|x, y, z) = (2)

∑
λ1,λ2

p(a|x, λ1)p(b|y, λ1, λ2)p(c|z, λ2)p(λ1)p(λ2).

Because of the independence of the underlying hidden
sources (p(λ1, λ2) = p(λ1)p(λ2)), (2) implies a non-
convex region. Therefore, the techniques developed for
LHV models can no longer be applied.

In this case, one can in principle resort to the AG ap-
proach [29], where the constraints implied by a DAG
are encoded in a semi–algebraic set, a list of polyno-
mial equalities and inequalities in all variables compos-
ing the DAG. Given that some of the variables are not
observable they need to be eliminated from our descrip-
tion. Formally, the problem is equivalent to quantifier
elimination: the projection of a semi–algebraic set onto
a subspace of it, that by Tarski-Seidenberg theorem is
again a semi–algebraic set [29, 30]. Via quantifier elim-
ination we obtain a full description, in terms of poly-
nomial inequalities, of the marginal scenario of inter-
est associated with any DAG. The problem with usual
methods [29, 34, 36] resides in its complexity, that not
only is double exponential, but also depends on the
domain size of all model variables, including hidden
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ones. Even for the simplest possible Bell scenario, the
bipartite LHV model in Fig. 1(a) with dichotomic inputs
and outputs (x, y, a, b = 0, 1), the hidden variable is 16-
dimensional, implying a total 256-dimensional object,
far beyond computational reach [34, 35]. It is clear that
AG methods, while allowing for the characterization of
arbitrary DAGs, are not an viable option in the study
of Bell scenarios.

New method for deriving polynomial Bell inequalities.—
To circumvent this problem, our method relies on the
realization that Bell inequalities can be seen as con-
straints arising from a marginal problem [48]: given
some marginal distributions of n variables is it possi-
ble to find a joint distribution of all variables, such that
this distribution marginalizes to the given ones? To
see that Bell’s theorem is indeed a particular marginal
problem, notice that the LHV description (1) is equiv-
alent to the existence of a joint distribution p =
p(a0, . . . , amx , b0, . . . , bmy) (represented as a vector p) de-
scribing the probability for outcomes of all possible
measurements, where ai labels the outcome a given that
x = i = {0, . . . , mx} and similarly for b. Since p defines
a valid probability, it is constrained by a set of linear
inequalities Lp ≥ 0 given by pi ≥ 0 (positivity) and
∑i pi = 1 (normalization) defining the simplex polytope
P [49]. Moreover, given that at each round of the exper-
iment only one ai and one bj can be measured simulta-
neously, p defines a non-observable quantity. However,
the constraints on p will also imply constraints on the
level of the observable distributions p(ai, bj). These are
exactly Bell inequalities, that in this picture can be un-
derstood as necessary and sufficient conditions for the
marginal problem to have a positive answer.

Similarly, a GLHV model also implies the existence of
a joint distribution p characterized by linear inequalities
Lp ≥ 0. The difference being that GLHV models also
imply a set of polynomial inequalities W(p)p ≥ 0 as de-
scribed by the CIs implied by the associated DAG. This
is the case in the DAG of Fig. 1(b) implying the inde-
pendence relation p(a, c) = p(a)p(c) and in many other
relevant scenarios in quantum information [3, 4, 6–
10, 17, 19–23]. In these cases, the GLHV model is char-
acterized by the intersection of P with W(p)p ≥ 0,
again a semi–algebraic set but that now does not de-
pend on hidden variables of the DAG anymore. Clearly,
this enormously reduces the number of variables re-
quiring double exponential complexity algorithms to be
eliminated. On the negative side, not all DAGs display
CIs on the level of p; in this cases, AG methods are
likely to be the only possible route.

Our approach consists in performing a quantifier
elimination (over unobservable terms) in the joint sys-
tem of inequalities Lp ≥ 0 and W(p)p ≥ 0, to which

one could use standard techniques such as cylindri-
cal algebraic decomposition [50]. Instead, we propose
a new quantifier elimination procedure that combines
facet enumeration and the Fourier-Motzkin (FM) elimi-
nation [51], basic tools from convex optimization there-
fore avoiding the conceptual and technical challenges
from an AG description.

The method proceed as follows. Given the scenario
of interest, we need to define pO and pNO standing, re-
spectively, to the set of components pi that we want to
keep or not in our description. We also need to define
pLNO and pWNO. The first corresponds to components
in pNO appearing only in Lp ≥ 0, the latter describes
components in pNO also appearing in W(p)p ≥ 0.
Terms pLNO can be eliminated via FM elimination over
Lp ≥ 0, obtaining a new set of linear relations L′p ≥ 0.
Equivalently, to obtain L′p ≥ 0, we can instead resort to
the usual facet enumeration procedure.

The terms in pWNO have to be eliminated considering
L′p ≥ 0 and W(p)p ≥ 0 jointly. To that aim, notice that
this system of inequalities can be linearized by consid-
ering some of the variables as free parameters of the
problem. Given W(p)p ≥ 0 there is going to be a min-
imum set of non-observable variables pFWNO that need
to be set to free parameters in order to linearize the
problem. Chosen pFWNO we can perform a FM elim-
ination over the remaining terms in pWNO, obtaining
a new system of inequalities W ′(p)p ≥ 0 depending
nonlinearly on terms pFWNO. To obtain inequalities de-
pending on the observable data only we have to fur-
ther eliminate the terms pFWNO. In this last step, the
algorithm relies on usual quantifier elimination meth-
ods. We highlight that this quantifier elimination will
be performed on a much smaller number of variables
given by |pFWNO|. In fact, for the bilocality scenario
(Fig. 1(b)) this last step will involve the elimination of
a single variable only, clearly illustrating the huge com-
putational benefit of this approach.

Examples.— Our method provides provides a compu-
tationally more accessible route as compared to usual
approaches from AG. However, given the intrinsic high
complexity of the problem, its computational treatment
is still bounded to cases with few variables. This is simi-
lar to what happens in usual LHV models, the full char-
acterization of even the seemingly simple Bell causal
structure in Fig. 1(a) been in general computationally
intractable [46]. To be able to obtain Bell inequalities
for more complex LHV models [52–55], the conceptu-
ally simple and clear geometric understanding of Bell
polytopes [46] has become an indispensable tool. Our
approach provides the equivalent conceptually simple
description of GLHV models and as shown next (and
detailed in [38]) allows for the straightforward deriva-
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tion of polynomial inequalities in a variety of scenarios.
For simplicity, in the following we focus on di-

chotomic outcomes (e.g. ai = 0, 1). It is then con-
venient to consider the equivalent description of the
problem in terms of the correlation vector E with com-
ponents given by expectation values, e.g., 〈AiBj〉 =

∑ai ,bj
(−1)ai+bj p(ai, bj). The vectors E and p are linearly

related as E = T−1p implying that E must obey linear
inequalities TE ≥ 0.

Consider for instance, the following question: given
a certain Bell inequality valid for LHV models, how is it
modified in the presence of further causal constraints?
For example, how is the LHV inequality for a tripartite
system

|I|+ |J| ≤ 4, (3)

–where I = ∑x,z=0,1 〈AxB0Cz〉 and J =

∑x,z=0,1(−1)x+z 〈AxB1Cz〉 – modified if we assume the
bilocality constraint [3] following from the DAG in
Fig. 1(b)? To prove that (3) is a valid inequality it is
sufficient to consider the inequalities following from
TE ≥ 0:

±I − 〈A0 A1〉 − 〈C0C1〉 − 〈A0 A1C0C1〉 ≤ 1, (4)

±J + 〈A0 A1〉+ 〈C0C1〉 − 〈A0 A1C0C1〉 ≤ 1. (5)

Summing these inequalities and using 〈A0 A1C0C1〉 ≤ 1
we obtain (3). Instead, considering the independence
constraint following from the DAG in Fig. 1(b),

〈A0 A1C0C1〉 = 〈A0 A1〉 〈C0C1〉 . (6)

and substituting it in (4) and (5), after some manipu-
lations we can combine them into the polynomial in-
equality

2 〈A0 A1〉2 + (±J ∓ I) 〈A0 A1〉 − (±I ± J + 2) ≤ 0. (7)

As discussed in the general algorithm, we arrive at
an inequality having a nonlinear dependence on non-
observable terms, in this case 〈A0 A1〉. Here, the quan-
tifier elimination of the unobservable term 〈A0 A1〉 cor-
responds simply to solve the quadratic equation (7).
The minimum of the polynomial in (7) is achieved at
〈A0 A1〉 = (±I ∓ J)/4, implying an inequality in terms
of observable data only

− (1/8)(±I −∓J)2 − (±I ± J + 2) ≤ 0, (8)

equivalent to the bilocality inequality derived in [3, 4,
27] using much more involved and less general tech-
niques. Consider the correlation I = J = 2 that can
be achieved quantum mechanically with two copies of
Bell states shared between the parties [27]. This corre-
lation admits a LHV model but violates (8), illustrating

the fact GLHV models are more restrictive to classical
explanations and therefore can witness a larger class of
nonlocal correlations.

Another nice feature of our construction is the fact
that independencies are not required to hold exactly:
we can quantify how much a given constraint must be
relaxed in order to explain some experimental data [15,
56]. In the bilocality scenario, allowing for correlations
CAC ≥ | 〈A0 A1C0C1〉 − 〈A0 A1〉 〈C0C1〉 | between A and
C, it follows that

− (1/8)(±I −∓J)2 − (±I ± J + 2) ≤ 2CAC, (9)

that is, the violation of (8) quantifies the degree of corre-
lation required to classically reproduce some nonbilocal
correlation. Considering again I = J = 2, we see that
it requires a maximum correlation CAC = 1 to be repro-
duced.

To further illustrate the practicality of our method we
also analytically derive in [38] new polynomial inequal-
ities for scenarios with more measurement settings or
parties. The relevance of such scenarios stems from the
fact that they typically allow for reductions in the ex-
perimental requirements (e.g. detection efficiency) for
the observation of nonlocality [55, 57–59]. Using our
method to derive new inequalities and analyze how
they may reduce experimental requirements is an in-
teresting topic for future research.

For instance, considering the four-partite scenario in
Fig. 1(c), follows that a similar inequality to (8) also
holds. The DAG in Fig. 1(c) involves 10 nodes, be-
ing completely intractable with computational tools. In
turn, considering the bilocality scenario in Fig. 1(b) with
3 measurement settings, follows that

− (1/8)(I − J + 16)2 + 8I ≤ 0, (10)

holds, with I = ∑x,z=0,1,2 〈AxB0Cz〉 and J =

∑x,z=0,1,2(−1)x+z 〈AxB1Cz〉. Choosing I = J = 9v
(achievable in quantum mechanics for v ≤ 1/2) it fol-
lows that for v ≤ 5/9 the correlation is local. However,
(10) is violated for v > 4/9, illustrating the gap between
the local and bilocal sets in this case.

Discussion.— Complex causal structures beyond
usual LHV models offer an almost unexplored territory
for generalizations of Bell’s theorem. The basic ques-
tion to be solved in this quest is how to derive poly-
nomial Bell inequalities bounding the classical corre-
lations compatible with them. In this work we made
an important step in that direction. We proposed a
new and general method that can be readily applied
to a wide range of scenarios, considering its application
in few GLHV models and deriving polynomial Bell in-
equalities characterizing them. Our approach not only
provides a more accessible computationally route but
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also, given its conceptual clarity, allows for analytical
derivations of polynomial Bell inequalities. Further-
more, it allows for relaxations of causal constraints and
naturally leads to a notion of nonsignalling correlations
in GLHV models [38].

Given the fundamental role that Bell inequalities play
in the study and practical applications of nonlocality,
we believe that our results will motivate and set a ba-
sic tool for future research. The natural next step is
to put the machinery to use in a variety of scenarios,
understanding how known inequalities are modified in
the presence of extra underlying causal constraints and
deriving new inequalities well suited, for example, to
decrease the requirements on experimental implemen-
tations. It would be interesting to investigate the role of
polynomial Bell inequalities in practical applications of
nonlocality, such as quantum cryptography [60], ran-
domness generation [61, 62] or distributed computing
[63]. For instance, the amount of violation of usual Bell
inequalities can be directly associated with the prob-
ability of success in communication complexity prob-
lems [63, 64]. Are there any communication problems
associated to polynomial Bell inequalities? Another
possibility is to find Tsirelson’s bounds [65, 66] asso-
ciated with generalized inequalities, that is, their max-
imum violation achievable with quantum correlations.
Related to that and inspired by results such as informa-
tion causality [67], it would also be relevant to derive
information-theoretical principles for these more com-
plex causal structures [9].

Note Added.— After completion of this work, a related
and complementary work discussing polynomial Bell
inequalities has appeared [68].
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