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Electric fields influence many aspects of cell physiology, including various forms of cell migration.
Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending
on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under
electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell
boundary. Water fluxes through the membrane are governed by the osmotic pressure difference
across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by
the properties of the ion channels as well as the external electric field. Results show that without
actin polymerization and myosin contraction, electric fields can also drive cell migration, even when
the cell is not polarized. The direction of migration with respect to the electric field direction is
influenced by the properties of ion channels, and are cell-type dependent.

PACS numbers: 87.16.Dp, 87.17.Jj, 87.15.Hj, 87.15.Tt, 87.16.Vy

Electric fields are important in many aspects of cell
dynamics, even for non-excitable tissue cells. During de-
velopment, electric fields are responsible for tissue pat-
terning and cell migration [1]. The mechanism that cou-
ples electrical signals to cell movement is not understood
[2]. The classic mechanism of cell migration on two-
dimensional (2-D) substrates combines actin-driven pro-
trusions with myosin contraction [3]. A similar mecha-
nism has been proposed for galvanotaxis, where electri-
cally induced downstream signal pathways could regulate
actomyosin dynamics [2] [Fig. 1(a)]. Here, the direction
of cell migration depends on the orientation of the ex-
ternal electric fields and the cell type [2]. However, wa-
ter permeation and ion fluxes across the cell membrane
[4, 5] can also drive cell movement and cell bleb for-
mation [6] in an actomyosin-independent manner. This
water-ion coupling leads to a natural connection among
actin-independent cell motility, electric fields, and gal-
vanotaxis. In this work, we explore this connection and
develop a flow-driven model of cell migration under a pre-
scribed external electric potential difference. We consider
a 1-D configuration [Fig. 1(b)], and explore properties of
membrane ion channels that affect migration under the
proposed mechanism. Since ion channel properties have
implications on the pathophysiology of cells [7], results
of our model can be used to explain actin-independent
movement of cancer cells such as glioblastoma [8].

The 1-D cell model is illustrated in Fig. 1(c). We con-
sider a cell with length L, width b, and depth w occupying
the entire cross section of a narrow channel. The coordi-
nate system moves with the cell body so that x ∈ [0, L]
represents the domain of the cell for all times. Four
ionic species, Na+, K+, Cl−, and A−, are considered.
Na+, K+, and Cl− are the most abundant ions in the
cells, and are transportable across the cell membrane
through specific channels. A− represents negatively
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FIG. 1. (Color online). Schematics of the model and mem-
brane channels in cells. (a) Cartoon of a 2-D cell under an
electric field. (b) Cartoon of a confined 1-D cell in a mi-
crochannel. (c) Diagram and the coordinate system of a 1-D
cell model in an applied external voltage drop, ∆V . The coor-
dinate system moves with the cell so that x ∈ [0, L] represent

the cell body. z ∈ [0, b] in the width direction. V
b/f
0 is the

extracellular electric potential at the back/front of the cell.
The cell velocity is assumed positive when the cell moves to-
wards the positive x−direction. (d) Schematics of the tension-
gated passive channels that transport ions along the poten-
tial difference across the membrane. (e) The mechanosen-
sitive gating function, Tm, follows a Boltzmann distribution
and ranges from 0 to 1. (f) Cartoons of the Na+/K+ pumps
and Na+-K+-Cl− cotransporters (NKCC). (g) Voltage depen-
dence function, GV , of the Na+/K+ pumps that ranges from
0 to 1.

charged molecules that are not permeable through the
membrane. Since most proteins are negatively charged,
A− is proportional to the total protein number in the
cell. Here, we set the valence of these proteins to be −1.
The cytoplasm is approximately electro-neutral so that
electroosmosis is neglected and

∑

n zncc,n(x) = 0, where
cc,n is the intracellular ionic concentration (in molars) of
each species; n ∈ {Na+,K+,Cl−,A−} and zn is the va-
lency of each ionic species. We use the subscript ‘c/0’
to represent variables associated with the intra-/extra-
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cellular domain and the superscript ‘b/f’ to denote the
back/front end of the cell. For example, V b

0 is the extra-
cellular electric potential at the back end of the cell.
The cell membrane is permeable to water due to aqua-

porins. The chemical potential of water, Ψ = p − Π, is
a combination of the hydrostatic pressure, p, and the os-
motic pressure, Π. The water flux through the membrane
is proportional to ∆Ψ = Ψc − Ψ0. We take the conven-
tion that the flux is positive from outside to inside so
that the flux per unit cross-sectional area is

J
b/f
water = −αb/f(∆pb/f −∆Πb/f) , (1)

where αb/f is the water permeability constant that de-
pends on the density of the aquaporins on the membrane.
The osmotic pressure is related to the total ion concen-
tration by Πc/0 = RT

∑

n cc/0,n, where RT is the gas
constant times the absolute temperature. The osmotic
pressure difference across the membrane will regulate the
cell volume [5]. Here we assume constant cell volume be-
cause simulations with different cell volumes did not lead
to qualitatively different results.
In this problem, water is assumed to be stationary with

respect to a fixed frame. The transported water through
the cell membrane contributes to the displacement of the
membrane and thus determines the velocity of cell mi-
gration, v0. Therefore, at steady state with constant cell
size J f

water = −Jb
water = v0. From Eq. 1 we have

∆pf = ∆Πf − v0/α
f , ∆pb = ∆Πb + v0/α

b , (2)

which expresses ∆pb/f in terms of ∆Πb/f and v0.
To obtain ∆Πb/f, the intracellular ion distribution

must be solved. We consider ion dynamics for Na+, K+,
Cl−, and A−. In the frame of the cell body, the electrod-
iffusion equation for the ions is ∂cc,n/∂t = −∂Jn/∂x,
where Jn is the intracellular ion flux for each species,
given by Jn = −Dn∂xcc,n − Dn

znF
RT cc,n∂xVc − v̄f cc,n,

where Dn is the diffusion constant, F is the Faraday’s
constant, and Vc is the intracellular electric potential. v̄f
is the averaged cross-sectional fluid velocity in the frame
of the cell body; v̄f = −v0 by assumption.
At steady-state, Jn’s must be constant in space; they

are determined by the boundary conditions of ion fluxes
through the membrane channels at the two ends of the
cell. In general, ions are both passively and actively
transported across membranes. Passive ionic transport is
carried out by ion channels and ionic transporters, some
of which are gated by membrane tension [τm, Fig. 1(d)].
Active transport is carried out by ion pumps, which uti-
lize chemical energy (ATP) to transport ions against a
chemical potential gradient.
The passive ion fluxes are proportional to the elec-

trochemical potential difference of ions across the mem-

brane, i.e., J
b/f
n,p = G

b/f
0,n T

b/f
m

(

RT ln Γ
b/f
n − znFV

b/f
m

)

,

where n ∈
{

Na+ ,K+ ,Cl−
}

since A− is impermeable

to the membrane. Γ
b/f
n = c

b/f
0,n/c

b/f
c,n is the ratio of extra-

and intra-cellular ion concentration at the cell boundary.

V
b/f
m = V

b/f
c − V

b/f
0 is the membrane potential. G

b/f
0,n

is a constant depending on the property and density of
channels; Gb

0,n and Gf
0,n can be different for a polarized

cell. Tm ∈ (0, 1) is a mechanosensitive gating function
[Fig. 1(e)] that follows a Boltzmann distribution, i.e.,
Tm = [1+ e−β1(τm−β2)]−1, where β1 and β2 are constant.
Another passive channel to consider is the Na+-K+-

Cl− cotransporter (NKCC) [Fig. 1(f)] because it, along
with its isoforms, is widely expressed in various cell types
[9]. The NKCC simultaneously transports one Na+, one
K+, and two Cl− into the cell under physiological condi-
tions, the flux of which can be written as [10]

J
b/f
NKCC,Na = J

b/f
NKCC,K = 1

2J
b/f
NKCC,Cl

= α
b/f
NKCCRT

(

ln Γ
b/f
Na + lnΓ

b/f
K + 2 lnΓ

b/f
Cl

)

, (3)

where α
b/f
NKCC is a transport rate constant independent of

the membrane tension. Since NKCC is electrically neu-
tral, its flux is independent of the membrane potential.
For the active ionic fluxes, we consider the Na+/K+

pump, a ubiquitous and important ion pump in animal
cells. It exports three Na+ ions and intakes two K+ ions
per ATP unit [Fig. 1(f)]. Because the overall flux is pos-
itively charged, the activity of the pump depends on the
membrane potential [11]. In addition, the flux depends
on the concentrations of Na+ and K+ [7, 12] and satu-
rates at high concentration limits [7]. By decoupling the
dependence of the voltage and ion concentration, as a
modification of existing models [7, 13], we assume that
the flux of Na+ and K+ through the Na+/K+ pump is

J
b/f
Na/K,Na = − 3

2J
b/f
Na/K,K = −α

b/f
ATPG

b/f
V c

b/f
ATP×

(

1 + α
b/f
Na/K,NaΓ

b/f
Na

)

−3 (

1 + α
b/f
Na/K,K/Γ

b/f
K

)

−2

, (4)

where α
b/f
ATP is a transport rate constant, c

b/f
ATP is the con-

centration of ATP. α
b/f
Na/K,Na and α

b/f
Na/K,K are two con-

stants. The exponents 3 and 2 are the Hill’s coefficients
of Na+ and K+, respectively. Eq. 4 ensures that the flux

is zero when either 1/Γ
b/f
Na or Γ

b/f
K goes to zero; the flux

saturates if 1/Γ
b/f
Na and Γ

b/f
K go to infinity. G

b/f
V captures

the voltage-dependence of the pump activity [11] and is

expressed as [Fig. 1(g)] GV = 2
[

1 + e−β3(Vm−β4)
]

−1
− 1

if Vm > β4 and GV = 0 otherwise, where β3 and β4 are
constant.
Combining the contributions from the passive chan-

nels and active pump, the total ion fluxes through the

back and front membranes for the four species are J
b/f
Na =

J
b/f
Na,p + J

b/f
NKCC,Na + J

b/f
Na/K,Na, J

b/f
K = J

b/f
K,p + J

b/f
NKCC,K +

J
b/f
Na/K,K, J

b/f
Cl = J

b/f
Cl,p+J

b/f
NKCC,Cl, and J

b/f
A = 0. Then we

have the boundary conditions for Jn’s, i.e., Jn|x=0 = Jb
n
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and Jn|x=L = −J f
n. The minus sign in the last relation

is due to the convention that J
b/f
n is positive inwards.

To obtain the water flux across the membrane, the
distribution of hydrostatic pressure is needed. At the
micro-scale, the fluid inertia can be neglected and the
lubrication theorem applies. In the frame of the cell
body the depth-wise averaged fluid velocity is vf (z) =
(1/2η)(∂pc/∂x)(z

2 − bz), where η is the dynamic vis-
cosity of the intracellular fluid. By assumption we have

v̄f = b−1
∫ b

0 vf (z)dz = −v0 so that v0 = (b2/12η)∂pc/∂x.
Then pc|x=L = pc|x=0 + (12η/b2)v0L. When the ex-
tracellular hydrodynamic and osmotic pressures are un-
polarized at the two ends of the cell, with Eq. 2, v0
can be solved as v0 =

∑

n(c
f
c,n − cbc,n)/γ, where γ =

(1/αf + 1/αb + 12ηL/b2)/RT .

The existence of an intracellular hydrostatic pressure
gradient and fluid flow will generate stresses on the cell
membrane. Here we assume that the membrane moves
with the cell. For cells in confined channels, the cell mem-
brane also contacts the channel lateral wall and experi-
ences friction. Hence, the tension balance in the mem-
brane is [τm(x + dx)− τm(x)] = η∂zvf

∣

∣

z=b
dx + ξwv0dx,

where ξw is the coefficient of friction between the mem-
brane and the channel wall. At the back of the cell,
the force balance of the membrane gives the bound-
ary condition ∆pb = 2τbm/b. The tension is then
τm(x) = b∆pb/2 + (6η/b+ ξw) v0x. Using Eq. 2, we
can solve the membrane tension at the back and front
of the cell as τbm = b

(

∆Πb + v0/α
b
)

/2 and τ fm = τbm +
(6η/b+ ξw) v0L, respectively. These tension values de-
termine the gating function, Tm.

The cell velocity depends on the properties of ion chan-
nels at the two ends of the membrane. The model pre-
dicts that a polarized cell can migrate under zero electric
potential drop (∆V = 0), with a direction determined
by the direction of cell polarization. For example, when
αb
NKCC > αf

NKCC, α
b
ATP < αf

ATP, or G
b
0,n < Gf

0,n, solute
moves in the positive x−direction, and the fluid follows
solute movement by osmosis. In this case, the cell move
towards the negative x−direction. This is reminiscent of
solute-fluid coupling in fluid absorbing epithelia [14, 15].

When an unpolarized cell is placed in a 10 mV po-
tential drop, the model predicts that the cell migrates
toward the back [Fig. 2(a)] with a speed of 19 nm/s. The
membrane potential is about −70 mV [Fig. 2(b)]. The
direction of cell migration is mainly determined by po-
larized intracellular osmotic pressure, which is higher at
the back [Fig. 2(c)]. The predicted intracellular concen-
tration of K+ is about 100 mM higher than those of Na+

and Cl− [Fig. 2(d)]. This concentration difference across
ion species is found to be electrophysiologically impor-
tant [16]. We can modulate the ion fluxes of Na+, K+,
and Cl− by adjusting the transport coefficients of the
membrane channels. When the activity of the Na+/K+

pump or the NKCC is either reduced or increased by 2
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FIG. 2. (Color online). Model predictions for a cell under a
given external electric potential drop ∆V = 10 mV. x ∈ [0, L]
represents the intracellular domain and the outside represents
the extracellular domain at the two ends. (a-d) Predictions
for an unpolarized cell with the membrane channel properties
provided in Tab.I in the Supplemental Material. The cell
migrates towards the negative x−direction at 19 nm/s. (e-h)

Predictions for the same cell but with G
b/f
0,Cl increased by one

order. The cell migrates towards the positive x−direction
at 10 nm/s. (a) and (e) Cartoons of a migrating cell with
non-uniform distribution of intracellular osmotic pressure. (b)
and (f) Spatial distribution of electric potentials. (c) and (g)
Spatial distribution of osmotic pressure. (d) and (h) Spatial
distribution of ion concentrations for Na+, K+, Cl−, and A−.

orders (based on the parameters in Tab.I in the SM), the
cell is still predicted to migrate towards the back. This
persistence in the migration direction was also seen in
the experiments by Allen et al. [2] wherein the ion fluxes
through the membrane were manipulated but the cell
did not reorient. When the passive ion transport coeffi-

cients for Cl−, G
b/f
0,Cl, are increased by 1 order of magni-

tude, however, our model predicts a reorientation of cell
migration [Fig. 2(e)] with a speed 10 nm/s. The mem-
brane potential remains polarized [Fig. 2(f)] but the ion
distribution is in favor of a higher intracellular osmotic
pressure at the front [Fig. 2(g)]. The predicted cell re-
orientation can be explained by a perturbative expansion
derived in the supplemental material (SM). A compari-
son between the analytic result and numerical solution is
shown in the SM as well.

We consider the three passive channels, the NKCC,
and the Na+/K+ pump as the primary pathways for
transmembrane ionic transport. Many other channels
and transporters are expressed in various cell types as
well, and many of them have been implicated in cell mi-
gration [17]. It may be of interest, and is indeed not dif-
ficult to incorporate this complexity into our modeling
framework. We do emphasize, however, that the physi-
cal principles discussed here should still be relevant even
with this added complexity.
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FIG. 3. (Color online). (a-b) Cell Velocity and the net current
through the cell as functions of the external electric potential
drop ∆V . See Tab.I in the SM for the parameters. (c-d) Cell
Velocity and the net current through the cell under ∆V =
2 mV. For each line, the ratio of Gf

0,n/G
b
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b
ATP, or

αf
NKCC/α

b
NKCC is varied while the other parameters are kept

same. The ratios are obtained when the channel properties
at the back membrane are fixed as in Tab.I while those at the
front membrane varies.

The model predicts that the intracellular potential
drop across the two ends, V b

c − V f
c , is at least one or-

der lower than the external potential drop ∆V [Fig. 2(b,
f)], consistent with the small perturbation approxima-
tion. As a result, the difference between V b

m and V f
m fol-

lows closely with ∆V , which affects the intracellular ion
distribution through the passive channels. Indeed, the
model predicts that the velocity of the cell varies with
∆V in an almost linear fashion [Fig. 3(a)], consistent
with Eq. 6 in the SM. In contrast with the 1-D model
prediction, a 2-D experiment showed that the direction
of an electric field reorients the cell, but the strength of
the field had no influence on the cell velocity [2]. This
difference may be due to polarization dynamics of the
cell because membrane channels and pumps will redis-
tribute and polarize based on environmental cues [2, 4].
Hence, the cell polarization, the environmental cues, and
the cellular responses are correlated. In our 1-D model,
we have assumed a static polarization by setting the ratio
of channels/pumps fluxes at the two ends and predict the
cell velocity accordingly [Fig. 3(c)]. In cells, this polar-
ized distribution of membrane channels may come from
vesicle trafficking and recycling of membrane from the
back to the front. A simple derivation for the polarized
channels/pumps distribution is included in the SM.

I = bwF
∑

n znJn is the net ionic current through the
cell; it can be calculated as a function of ∆V and polar-
ization ratios [Fig. 3(b,d)]. This current depends on the
effective resistance imposed by the membrane channels,
such as the density of channels and the rate of ion trans-
port of each channel, and is thus a potential measure of
the physiological or pathological state of a cell. Indeed,
the measurement of current or the estimation of the ef-

fective resistance has implications on other biophysical
contexts, including the electrical property of epithelium
and the coupled solute-solvent flow within it[14]. In our
model [Fig. 2(a-d)], the flux through each passive channel
or active pump is about 10−17 mol/µm2/s, corresponding
to ∼ 107 ions/µm2/s. Under normal conditions a passive
channel (an active pump) transports ∼ 107 (∼ 104) ions
per second [18]; then the model implies that around 1
passive channel (103 active pumps) per µm2 are needed
to support the total flux and cell migration.

The predicted cell velocity in our model is on the order
of 10 nm/s, comparable to velocities of actin-based cell
migration [19]. If actin is involved, then there could be
mechanical coupling between water flow and actin net-
work dynamics. For instance, the hydrostatic pressure
gradient and the membrane tension gradient could in-
fluence actin polymerization and determine direction of
actin protrusion. These complex questions require fur-
ther investigation and are beyond the scope of the current
paper.

In this work we adopt a flow-driven mechanism to de-
velop a physical model of cell migration under an external
electric field. The model can also predict the cell migra-
tion velocity under different osmotic conditions, similar
to the predictions of an electro-neutral model [4] (see
SM). In this work, we have considered constant extra-
cellular concentrations of Na+, K+, and Cl−; voltages
are changed independently. Different predictions are ex-
pected if voltages are controlled by a set of ions involv-
ing Na+, K+, or Cl−. In general, charge transport, os-
molarity, and water flow are all coupled in the complex
biophysics of the cell, and may drive cell migration and
active cell shape changes in different environments.
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