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We study the entanglement spectrum of highly excited eigenstates of two known models which
exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg
model and the quantum random energy model. Our results indicate that the entanglement spec-
trum shows a “two-component” structure: a universal part that is associated to Random Matrix
Theory, and a non-universal part that is model dependent. The non-universal part manifests the
deviation of the highly excited eigenstate from a true random state even in the thermalized phase
where the Eigenstate Thermalization Hypothesis holds. The fraction of the spectrum containing
the universal part decreases as one approaches the critical point and vanishes in the localized phase
in the thermodynamic limit. We use the universal part fraction to construct an order parameter
for measuring the degree of randomness of a generic highly excited state, which is also a promising
candidate for studying the many-body localization transition. Two toy models based on Rokhsar-
Kivelson type wavefunctions are constructed and their entanglement spectra are shown to exhibit
the same structure.

PACS numbers: 03.65.Ud, 05.30.Rt, 75.10.Pq, 72.15.Rn

Introduction–Quantum entanglement, a topic of much
importance in quantum information theory, has also
gained relevance in quantum many-body physics in the
past few years [1, 2]. In particular, the entanglement
entropy provides a wealth of information about physical
states, including novel ways to classify states of matter
which do not have a local order parameter [3]. However,
it has been realized only recently in various physical con-
texts that the entanglement entropy is not enough to
fully characterize a generic quantum state. For exam-
ple, the quantum complexity corresponding to the geo-
metric structure of black holes cannot be fully encoded
just by the entanglement entropy [4]. One natural step
beyond the amount of entanglement is the specific pat-
tern of entanglement, i.e., the entanglement spectrum.
A recent result which motivates this direction is the re-
lationship between irreversibility and entanglement spec-
trum statistics in quantum circuits [5, 6]. It was shown
that irreversible states display Wigner-Dyson statistics
in the level spacing of entanglement eigenvalues, while
reversible states show a deviation from Wigner-Dyson
distributed entanglement levels and can be efficiently dis-
entangled.

Are there universal features in the entanglement spec-
trum of a generic eigenstate of a quantum Hamiltonian?
Highly excited eigenstates of a generic quantum Hamilto-
nian are believed to satisfy the “Eigenstate Thermaliza-
tion Hypothesis” (ETH) [7–9], which states that the ex-
pectation value 〈ψα|Ô|ψα〉 of a few-body observable Ô in
an energy eigenstate |ψα〉 of the Hamiltonian with energy
Eα equals the microcanonical average at the mean en-
ergy Eα. So one could as well ask: what is the structure
of the entanglement spectrum of highly excited eigen-

states of a thermalized system? Here we find a quandary.
Completely random states are generically not physical,
namely, they cannot be the eigenstates of Hamiltonians
with local interactions. For ETH to be a physical scenario
for thermalization, highly excited eigenstates of physical
local Hamiltonians cannot always be completely random,
yet they have to contain enough entropy. Deviations from
a completely random state can be quantified by the en-
tanglement entropy, more precisely by the amount that
it deviates from the maximal entropy in the subsystem,
derived by D. N. Page, which we will refer to as Page en-
tropy hereafter [10]. But are there features that cannot
be captured by the entanglement entropy alone? Can one
identify remnants of randomness in the full entanglement
spectrum? What about in states that violate ETH?

In this Letter, we address the above questions using
as case study the problem of many-body localization
(MBL) [11–15]. We study two known models which were
shown to exhibit an MBL transition, namely the Heisen-
berg spin model with random fields, and the quantum
random energy model (QREM) [16–18]. In the delocal-
ized phase, high-energy eigenstates are thermalized ac-
cording to ETH. The deviation from completely random
states manifests itself in a “two-component” structure in
the entanglement spectrum: a universal part which cor-
responds to Random Matrix Theory (RMT) [19], and
a non-universal part which is model dependent. We
show that the universal part fraction decreases as one
approaches the transition point and vanishes in the lo-
calized phase in the thermodynamic limit. We therefore
propose an order parameter that is able to measure the
degree of randomness of a generic highly excited state and
capture the many-body localization-delocalization transi-
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tion based on the entanglement spectrum, and show that
it gives predictions consistent with previous results. We
further construct two toy models in terms of Rokhsar-
Kivelson (RK) type wavefunctions [20, 21] and the same
structure in the entanglement spectra is observed.

Heisenberg spin chain–A well-studied model that
shows an MBL transition is the isotropic Heisenberg spin-
1/2 chain with random fields along a fixed direction,

H =

L∑
i=1

(
hi S

z
i + J ~Si · ~Si+1 + ΓSxi

)
, (1)

where the random fields hi are independent random vari-
ables at each site, drawn from a uniform distribution
in the interval [−h, h]. Γ is a uniform transverse field
along the x-direction, which breaks total Sz conserva-
tion. We assume periodic boundary condition and set
the coupling J = 1 and Γ = 0.1. In the absence of
the transverse field Γ, previous work located the critical
point at h = hc ≈ 3.5 in the Sz = 0 sector [13, 22, 23].
We consider two different regimes by varying the disorder
strength parameter h: (i) within the thermalized phase
(h < hc); and (ii) in the localized phase (h > hc). In
each regime, we focus on eigenstates of Hamiltonian (1)
at the middle of the spectrum, namely, on highly excited
states.

We consider a bipartition of the system into subsys-
tems A and B of equal size (L/2 sites each). For a generic
eigenstate |ψ〉 =

∑
σ ψ(σ)|σ〉, where σ ≡ σ1σ2 . . . σL la-

bels the 2L possible spin configurations of the system,
we cast the wavefunction as ψ(σ) ≡ ψ(σA σB), where
σA ≡ σ1 . . . σL/2 and σB ≡ σL/2+1 . . . σL. The en-
tanglement spectrum is obtained from the eigenvalues
of the reduced density matrices ρA = trB |ψ〉〈ψ| and
ρB = trA|ψ〉〈ψ|: {pk = λ2k}, k = 1, . . . 2L/2. In this work,
we are primarily concerned with the density of states and
level statistics of the {λk} for highly excited eigenstates
for different strengths of disorder. For each value of h
analyzed, the spectra were averaged over 10 realizations
of disorder for L = 16, and 100 realizations for L = 14.
For each spectrum, the eigenstate with energy closest to
zero was obtained by a Lanczos projection [24]. This
eigenstate corresponds to a highly excited state.

Thermalized phase–We start by considering the weakly
disordered case, h� hc. Only a small amount of disorder
is necessary to break the integrability of the clean Hamil-
tonian. However, conservation of the total Sz also plays
a crucial role in making eigenstates completely random.
A small transverse field Γ is applied to break this con-
servation without substantially altering the many-body
localization transition. In this regime, we find that the
entanglement spectrum of the highly excited state with
eigenenergy near zero is close to that of a completely
random quantum state, as shown in Fig. 1a for sys-
tems of size L = 16 and h = 0.5. The entanglement
spectrum follows closely a Marchenko-Pastur distribu-

tion (with proper normalization), which describes the
asymptotic average density of eigenvalues of a Wishart
matrix [25, 26]. (The expression for the entanglement
spectral density for the random state is presented in
the Supplemental Material.[27]) One can also check that,
in this regime, the von Neumann entanglement entropy
S(1) = −

∑
k pk ln pk is in good agreement with the Page

entropy for random states: Sm,n =
∑mn
k=n+1

1
k −

m−1
2n ≈

ln(m) − m
2n , where m and n are the Hilbert space di-

mensions of subsystem A and B, respectively [10]. For
example, our computed average entropy for 16 sites is
〈S(1)〉 = 4.9719 ± 0.0015, while the corresponding Page
entropy is SPage = 5.0452.

As the disorder strength is increased, but still h < hc,
the system remains in the thermalized phase where it is
supposed to obey the ETH and yield volume-law scal-
ing of the entanglement entropy with system sizes [30],
which is verified in the insets of Figs. 1a to 1e. However,
in spite of the volume-law scaling of the entanglement
entropy and the thermalization of eigenstates, the entan-
glement entropy is much lower than the Page entropy.
This indicates that the pattern of entanglement must
have changed, which is manifest in the spectra shown
in Figs. 1b to 1e. The entanglement spectrum shows
a striking “two-component” structure: (i) a universal
tail in agreement with RMT, and (ii) a non-universal
part. The non-universal part dominates the weights in
the spectrum (large λk values), resulting in low entangle-
ment entropy, as it decays much faster than the universal
part. Therefore we find that, although thermalized states
are not necessarily random states, they partially retain a
component that is reminiscent of a random state: the en-
tanglement spectrum follows the Marchenko-Pastur level
density distribution. In addition, the universal part of
the entanglement spectrum follows a Wigner-Dyson dis-
tribution of level spacings (see Supplemental Material).
Localized phase–In this regime, the entanglement en-

tropy exhibits an area-law scaling with the system size
(see inset of Fig. 1f), which in one spatial dimension im-
plies a constant entropy and, at most, weakly logarithmic
corrections, in accordance with Ref. [31].

The entanglement spectrum in the localized regime,
depicted in Fig. 1f for h = 6, shows a different scenario
from that in the thermalized phase: the universal part
of the spectrum disappears completely, leaving only the
non-universal part characterized by its fast decay rate.
QREM –The QREM describes L spins in a transverse

field Γ with the following Hamiltonian:

H = E({σz}) + Γ

L∑
i=1

σxi (2)

where E({σz}) is the classical REM term that takes inde-
pendent values from a Gaussian distribution of zero mean
and variance L/2 [32]. This model was first studied in the
context of a mean-field spin glass, and was shown to ex-
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Figure 1: (Color online) Average entanglement spectrum of highly excited eigenstates for a system of size L = 16, averaged
over 10 realizations of disorder (plotted in logarithmic scale). Panels a–f show the spectrum for h = 0.5, 1.5, 2, 2.5, 3 and 6,
respectively. The solid lines correspond to the spectrum of a completely random state (derived from a Marchenko-Pastur

distribution), and is shown for reference. Insets: scaling of the average entanglement entropy S(1) with system size.

hibit a first-order quantum phase transition as a function
of Γ [16]. More recently, it was further demonstrated to
have an MBL transition when viewed as a closed quan-
tum system [17]. Numerical and analytical arguments
show that the transition happens at an energy density
|ε| = Γ in the microcanonical ensemble. Since there is
no support for the many-body localized phase at energy
density ε = 0, we examine the eigenstates with energy
density closest to ε = 0.5 instead, and study the entan-
glement spectrum as Γ is tuned. The two-component
structure and its evolution as a function of Γ similar to
Fig. 1 are again observed (see Supplemental Material).

An order parameter–The above picture unveils a new
aspect of the MBL transition. The two parts of the
entanglement spectrum of a highly excited state clearly
evolve as the disorder strength h is increased, namely, the
universal part shrinks and the non-universal part grows.
This fact suggests that one could use the fraction of each
component as an order parameter.

Figures 1a to 1e indicate an h-dependent value kh that
separates the non-universal (k ≤ kh) from the universal
(k > kh) parts of the rank-ordered entanglement levels
(see Supplemental Material for the protocol for determin-
ing kh). One can thus define the partial Rényi entropies

S
(q)
≤ =

1

1− q
ln
∑
k≤kh

pqk , (3)

with q ≥ 0. Because the universal part of the spectrum is
where the eigenvalues with low entanglement reside, this
part of the spectrum is obscured by any measure that
relies on the eigenvalues as weights. A good measure of
the fraction of the two components that does not depend

on these weights is given by the q = 0 Rényi entropy

which simply measures the ranks: S
(0)
≤ = ln kh. There-

fore, an order parameter that measures the fraction of
the universal component is

OMBL = 1−
S
(0)
≤

S(0)
= 1− log2 kh

L/2
. (4)

Figure 2 shows the order parameter as defined above
for the Heisenberg spin model and the QREM, respec-
tively. For the QREM, all curves at different system sizes
cross at Γc ≈ 0.5, in excellent agreement with Ref. [17].
We have also looked at enegy density ε = 0.3, and the
curves cross at Γc ≈ 0.25, giving the same numerical pre-
diction as in Ref. [17] and Ref. [18] (plot shown in the
Supplemental Material). For the random-field Heisen-
berg model, however, the fact that the transition happens
at the point where the order parameter is nearly zero
makes it harder to accurately locate the critical point us-
ing our order parameter. We see from Fig. 2 that the
curves cross at hc ≈ 3.3, which is also consistent with
previous studies. This indicates that, by considering the
full entanglement spectrum at high energies, our order
parameter reveals a novel property that is promising for
studying the MBL transition.

We remark that, although the MBL transition can
also be captured by the scaling property of the entangle-
ment entropy, our order parameter seems to be applicable
even for models with non-local interactions, which could
obscure the connection between the volume-to-area law
transition of the entropy and the MBL transition.
Toy models–we construct two RK-type model wave-

functions which are shown to have (i) the two-component
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Figure 2: (Color online) The order parameter defined as the
fraction of the universal component in the full entanglement
spectrum for the Heisenberg spin model (upper panel) and
the QREM (lower panel).

structure in their entanglement spectra, and (ii) a phase
transition as a function of the tuning parameter. The
wavefunctions take the following form:

|Ψ〉 =
1√
Z

∑
σ

sσe−
β
2E(σ)|σ〉, (5)

where E(σ) is the energy for the classical configuration
σ and Z is the corresponding partition function of the
classical statistical system [21]. sσ is a random sign for
each configuration, such that the wavefunction represents
a highly excited state. We consider the following two
cases: (i) E(σ) = EREM(σ); (ii) E(σ) = − J

L

∑
i<j σ

z
i σ

z
j .

In the first case, the energy is taken to be that of the
REM, while in the second case the energy is that of an
infinite-range uniform ferromagnetic interaction.

In the small β regime, the above RK-type wavefunc-
tions are close to completely random states; upon in-
creasing β, the wavefunctions are pushed towards prod-
uct states and start to deviate from completely random
states. Therefore the tuning parameter β here plays the
role of the ‘disorder strength’. Indeed, we find the same
two-component structure in the entanglement spectrum
(see Supplemental Material), and the order parameter is
shown in Fig. 3. The REM case was recently studied
by Chen et al. where the MBL transition was obtained
numerically using other measures [33]. Here we clearly
see that, in both cases, the curves cross at some critical

β, indicating the existence of a similar phase transition.

Summary and discussion–The details of the structure
of the entanglement spectrum, especially the universal
part at the tails of the spectrum, have long been over-
looked. The main focus has been primarily on the dom-
inating non-universal component, and the universal tail
has thus far been discarded. For example, in the density
matrix renormalization group [34] and tensor network
methods [35], the density matrix is truncated to avoid
uncontrolled growth of its dimensions. While this proce-
dure is certainly justified when the purpose is to obtain
ground state properties, it discards important informa-
tion about the behavior of the system at higher energy
states. In this Letter we showed that the full entangle-
ment spectrum, directly computable from the wavefunc-
tion, provides information which is often invisible in the
entanglement entropy alone.

On the other hand, much has been known about ran-
dom quantum states, e.g. the Page entropy and volume-
law scaling entropy. Nevertheless, the Page entropy is
often an overestimate of the actual entanglement entropy
computed from generic quantum states. Therefore, a nat-
ural question that arises is: how random does a given
quantum state look? In this Letter, we show that a
generic quantum state which satisfies ETH does not nec-
essarily mean a completely random state. We present an
order parameter to quantify the degree of randomness by
using information about the full entanglement spectrum.
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Figure 3: (Color online) The order parameter for the
random-sign RK-type wavefunctions. Upper panel: E(σ) =
EREM(σ); lower panel: E(σ) = − J

L

∑
i<j σ

z
i σ

z
j , with J = 1.
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In the context of MBL, our order parameter is able to
locate the critical point, consistent with previous results.
Our work may provide a novel way of studying MBL, and
shed new light on the understanding many-body systems
at the level of wavefunctions.
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