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The rates at which energy and particle densities move to equalize arbitrarily large temperature and
chemical potential differences in an isolated quantum system have an emergent thermodynamical
description whenever energy or particle current commutes with the Hamiltonian. Concrete examples
include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ
spin chain), energy current in Lorentz-invariant theories or particle current in interacting Bose gases
in arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions,
which we call “expansion potentials”, expressed as integrals of equilibrium Drude weights. This
relation between nonequilibrium quantities and linear response implies non-equilibrium Maxwell
relations for the Drude weights. We verify our results via DMRG calculations for the XXZ chain.

The dynamics of how a system of interacting particles
expands from an initial state with spatial variation of
temperature, density, or both is one of the basic prob-
lems in non-equilibrium statistical physics. The study of
quantum effects on this process was reinvigorated by the
experimental creation of ultracold atomic gases [1, 2], in-
cluding cases where the atoms are confined to one or two
spatial dimensions. Originally the main quantity mea-
sured was the momentum distribution [3, 4], but recent
progress on the “quantum gas microscope” and related
techniques has made it possible to image particle density
with high resolution, e.g., on single sites of an optical
lattice [5–7].

Such imaging methods mean that important observ-
ables to characterize expansion of an atomic gas in ei-
ther free space or an optical lattice [8] are not the same
as those for non-equilibrium processes in electronic trans-
port. For electrons, the charge or energy current between
two leads has been studied in hundreds of situations, in-
cluding a few non-equilibrium results with interactions
such as tunneling between Luttinger liquids [9, 10], the
interacting resonant level model [11–14] and the single
impurity Anderson model (for a recent review see [15]).
The point of the present work is to show that one nat-
ural quantity of interest for atomic expansion measure-
ments [16–21], namely the change in time of the first
moment of particle or energy density, has a precise non-
equilibrium thermodynamic description in a broad class
of systems. For a continuum system with either Lorentz
or Galilean invariance, this description reduces to stan-
dard thermodynamic state functions, but we find that
even lattice systems relevant to current experiments have
a description in terms of an “expansion potential” that
is distinct from conventional thermodynamic quantities.

We use this description to compute the energy ex-
pansion rate exactly in the anisotropic Heisenberg spin
chain (XXZ model) and compare our results in detail
against time-dependent density-matrix renormalization
group (DMRG [22–24]) calculations using the finite tem-
perature algorithm explained in [25]. The same for-

malism is applicable to higher-dimensional systems with
emergent Lorentz or Galilean invariance. Our predic-
tions apply in particular to a one-dimensional Bose gas
(Lieb-Liniger model [26, 27], or its lattice regularization
in terms of q-deformed bosons [28]), expanding into vac-
uum, a problem that has attracted a lot of attention re-
cently [8, 29–40]. Our results show that, at least for some
quantities, exact results can be obtained for far-from-
equilibrium expansion even in lattice models at arbitrary
coupling strength.

At t = 0, prepare two semi-infinite regions x < 0 and
x > 0 at equilibrium with chemical potentials and tem-
peratures (µL, TL) and (µR, TR) (Fig 1a). (The initial
state on the boundary between the two leads, or a possi-
ble finite extent of the boundary region, will not matter
for the quantities of interest here after some initial tran-
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FIG. 1. (a) Nonequilibrium expansion setup considered in
this letter. (b) Energy point current jE(x, t) in the XXZ spin
chain (see Fig 2 for parameters). (c) The variation of the
expansion potential G does not depend on the path in the
(β, µ) space. This implies nonequilibrium Maxwell relations
(see text).
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FIG. 2. Spatially integrated charge and energy currents in the
XXZ model with open boundary conditions as a function of
time for one choice of parameters TL, µL, TR, µR at ∆ = 0.5
under two protocols (A) and (B) that differ only in the way
the central bond is dealt with in the initial state [41]. The

currents J =
∫ Λ

−Λ
jdx are locally integrated around the cut

site. The chemical potentials µL,R prepare the state but are
not included in the real-time evolution (i.e., they are chemi-
cal potentials rather than electric potentials). Inset: energy
density profile as a function of time. The spatially integrated
energy current is equal to dM th

1 /dt where M th
1 is the first

moment of energy density.

sient.) We write one-dimensional equations for simplicity
but the concept is general. We quantify the expansion
for t > 0 by the time dependence of the first moment of
particle density, or similarly for energy,

M1(t) =

∫ Λ

−Λ

n(x, t)x dx, (1)

with Λ a large observation scale: Λ� vt with v a typical
velocity. From now on we suppress the arguments of n
and M1. The continuity equation relates density and

current ∂tn+ ∂xj = 0. Now dM1

dt = −
∫ Λ

−Λ
x∂xj dx = J ,

with J =
∫ Λ

−Λ
j dx where in the integration by parts we

have assumed j(x) ≈ 0 at x = ±Λ (Fig 1b).
The key ingredient for the existence of an expansion

potential is the conservation of integrated current:

[∮
j dx,H

]
= 0, (2)

which is true for many problems of interest with periodic
boundary conditions. Note that this is a stronger state-
ment than what is sometimes meant by a “conserved cur-
rent”, which is anything related to a conserved charge by
a continuity equation. A simple example with such a con-
servation law is a Bose gas in d spatial dimensions with

say, δ-function interactions H =
∫
ddxΨ†

(
−∇2

2m

)
Ψ +

cΨ†Ψ†ΨΨ, with
[
Ψ†(x),Ψ(y)

]
= δ(x− y), where the to-

tal particle current JQ = −i
∫
dx(Ψ†∇Ψ−∇Ψ†Ψ) is con-

served. More generally, a system with one species of par-
ticles moving in the continuum in any spatial dimension
will satisfy (2) for particle current if particle current is
proportional to total momentum and momentum is con-
served by the interactions. A less trivial example of (2)
is energy current in the spinless fermion model or XXZ
spin chain (we will use the former representation): the
energy current operator JE = i

∑
j [hj , hj+1] commutes

with the XXZ Hamiltonian HXXZ =
∑
i hi with

hi = −J
2

(
c†i+1ci + h.c.

)
+ J∆

(
ni −

1

2

)(
ni+1 −

1

2

)
,

(3)

with ni = c†i ci, implying purely ballistic energy trans-
port [41, 42]. An example of a current not conserved
in this sense is charge current in the XXZ model; while
there is a degree of ballistic transport in this model in the
gapless regime even at nonzero temperature [43–45], the
commutator in (2) is nonzero. Steady-state energy cur-
rents between reservoirs have been actively studied [46–
52] but exact results have been difficult to obtain except
in the low-temperature conformal limit or for noninter-
acting systems.
Expansion potentials. The global current conserva-

tion law (2) implies that the current density should itself
satisfy a continuity equation for some “current of cur-
rent” P ,

∂tj + ∂xP = 0, (4)

and we will see in the following that the operator P is
related to pressure for systems with emergent Galilean or
Lorentz invariance. Now spatially integrate this second
continuity equation (4) over the region [−Λ,Λ] centered
on the boundary between our two large reservoirs L and
R. Then

d2M1

dt2
= −P ]Λ−Λ = ∆G = GL − GR, (5)

where we have introduced the expansion potential
G(µ, T ) = 〈P 〉µ,T for the thermodynamic expectation of
the operator P .

This is a strong constraint on the integrated current

J =
∫ Λ

−Λ
jdx. We perform DMRG calculations on a XXZ

spin chain with open boundary conditions that effectively
describes a region of an infinite system. Within that re-
gion (shown in Fig. 1b), the total energy current is clearly
not conserved [41] and grows linearly with time (Fig. 2)
for times short enough that the reservoirs are effectively
infinite, so their initial values can be used in the bound-
ary evaluation on the right-hand side of (5). If the cur-
rent has both diffusive and ballistic components (like the
charge current in the XXZ chain), diffusive contributions
die out after a transient and the spatially integrated cur-
rent also grows linearly. However, the situation becomes



3

0 20 40 60
time tJ

0

0.1

0.2

equilibrium <JQ(t)JQ>/LT

non-equil. ∂µ<JQ(t)>/t

0 2 4 6
1/T

0

0.2

Dth(T)

∂T[<JE(t)>/t]t→∞

T=3.33

T=1

T=1/2

T=1/3

∆=0.5

FIG. 3. Comparison between charge Drude weight (long-time
asymptote of 〈JQ(t)JQ(0)〉/LT and rate of particle spread-
ing d2Mc

1/dt
2 = 〈JQ(t)〉t/t for a small chemical potential

difference (∆µ ∼ 10−3 � J = 1) in the XXZ chain (pro-
tocol A). Inset: similar relation for energy transport be-
tween thermal Drude weight and rate of energy spreading
d2M th

1 /dt2 = 〈JE(t)〉t/t for a small temperature difference at
half-filling (see eq. (6)).

especially simple for a current satisfying (2), the key be-
ing that the right-hand side of (5) contains only the op-
erator P evaluated at equilibrium, since deep within the
reservoirs the system remains arbitrarily close to equilib-
rium in this intermediate time regime. This result relies
only on (2) and does not depend on whether the system
is gapped or gapless for instance.

Linear response. One more relation is all that is
needed to compute the expansion potential in some im-
portant cases. This is because eq. (5) implies that linear-
response is enough to predict non-equilibrium, since lin-
ear response gives the derivative of G, and knowing its
derivative determines the function up to an arbitrary
additive constant. Focusing for the moment on en-
ergy current and a purely thermal gradient, linear re-
sponse then predicts jE = −σE∇T with the thermal
conductivity characterized by a thermal Drude weight
σE(ω) = πDth(T )δ(ω) with Dth = β2〈J 2

E〉/L, where
L is the size of the system. The spatially integrated
current between the two reservoirs R and L then reads∫ Λ

−Λ
jEdx = π∆Tδ(ω = 0)Dth(T ) where the time t

can be thought of as an infrared cutoff that regularizes
δ(ω = 0) ≈

∫ t
−t

dt
2π = t/π. We thus find

d2M th
1

dt2
=

1

t
〈JE〉t = Dth(T )× (∆T ), (6)

with JE =
∫ Λ

−Λ
jEdx and 〈. . . 〉t refers to the nonequi-

librium expectation value after time t. For the charge
current at constant temperature TR = TL = T , we sim-

ilarly find
d2Mc

1

dt2 = 〈JQ〉t/t = Dc∆µ with the charge

Drude weight Dc = β〈J 2
Q〉/L (if [H,JQ] = 0), for a small

chemical potential gradient ∆µ. These results are easily
extended to the case where both temperature and chem-
ical potential gradients are present (see below). We also
note that these linear response results remain valid even
if the currents are not fully conserved and contain diffu-
sive parts, like the charge current in the XXZ spin chain,
which provides a direct way to measure Drude weights
via imaging in cold atom experiments (see also [53]).
We checked this relation between charge (resp. thermal)
Drude weight and linear-response rate of spreading of
charge (resp. energy) in the XXZ chain (see Fig. 3) –
similar relations also exist for diffusive systems [54].
Nonequilibrium expansion potentials. The thermody-

namic description eq. (5) together with the linear re-
sponse prediction implies that the spreading of particles
and energy far from equilibrium are fully characterized
by the equilibrium Drude weights. As an example, let us
consider the rate of energy spread in the XXZ spin chain
between two reservoirs at different temperatures TR and
TL and µ = 0. Then even far from equilibrium

dM th
1

dt
∼

t→∞
t×
∫ TL

TR

Dth(T )dT. (7)

In other words, the nonequilibrium rate of energy spread
is given by the variation ∆R→LGE = GE(TL)−GE(TR) of
a state function GE(T ) with ∂TGE = Dth(T ). This can be
checked numerically by comparing the rate of expansion
to the thermal Drude weight of the XXZ model computed
by Klümper and Sakai [55] (see Fig. 4).

This is easily generalized to the case of reservoirs R
and L with both different temperatures (TR and TL) and
chemical potentials (µR and µL) . If the energy current is
conserved, eq. (5) implies that the far-from-equilibrium
rate of energy spread is given by the variation of an ex-
pansion potential GE(µ, β = T−1)

d2M th
1

dt2
= ∆R→LGE =

∫

R→L
dGE , (8)

where the differential dGE is exact so that the integral
does not depend on the chosen path. The state function
GE is then fully determined by the equilibrium Drude
weights associated with the conservation of the energy
current. Linear response theory [56] then yields

dGE = β
〈JQJE〉

L
dµ−

( 〈J 2
E〉
L
− µ 〈JQJE〉

L

)
dβ. (9)

Even if JQ is not conserved, the Drude thermopower is
a thermodynamic quantity determined by 〈JQJE〉 pro-
vided that [JE , H] = 0. If the particle current is con-
served, we find similarly that the integrated nonequi-
librium particle current between two reservoirs (µR, βR)
and (µL, βL) is given by the variation of another state

function
d2Mc

1

dt2 = ∆R→LGQ with dGQ = β
〈J 2

Q〉
L dµ −(

〈JQJE〉
L − µ 〈J

2
Q〉
L

)
dβ.
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FIG. 4. The thermodynamic description (5) implies that the
spatially integrated current J1→2 between two reservoirs 1
and 2 should be equal to J1→3 + J3→2 for any intermediate
reservoir 3. We verified this “cyclic invariance” of the spa-
tially integrated energy current 〈JE(t)〉t/t and point current
〈jE(x = 0, t)〉t in the XXZ chain (protocol A). While cyclicity
for the point current may be only approximate, it is exact for
the integrated current. Insets: numerical check of eq. (7) and
of the nonequilibrium Maxwell relation (10) that follows from
conservation of energy current.

Nonequilibrium Maxwell relations. We saw above
that when either the energy or particle current is fully
conserved, then even far from equilibrium the expan-
sion dynamics of energy or particle densities are charac-
terized by state functions that are entirely determined
by equilibrium Drude weights. An interesting corol-
lary of the path-independence of these state functions
(Fig 1c) are nonequilibrium Maxwell relations for the
Drude weights. For example, if the energy current is
conserved, ∂µ∂βGE = ∂β∂µGE yields

(β∂β − µ∂µ)〈JQJE〉+ ∂µ〈J 2
E〉 = 0, (10)

which can also be rewritten as 〈∆HJQJE〉 = 〈∆NJ 2
E〉

with ∆H = H − 〈H〉 and ∆N = N − 〈N〉. This equal-
ity was known in the context of the XXZ chain [57] and
was actually used to compute the Drude thermopower
analytically [58], but our approach provides a very trans-
parent derivation of why such a relation has to hold (see
Fig. 4 for a numerical check). If the charge current is
conserved, then the associated nonequilibrium Maxwell
relation reads (β∂β − µ∂µ)〈J 2

Q〉+ ∂µ〈JEJQ〉 = 0, which

can also be rewritten as 〈∆HJ 2
Q〉 = 〈∆NJQJE〉.

Examples in d > 1 dimensions. Even though most
of the arguments discussed above focused on one dimen-
sion for simplicity, the general concepts apply in higher
dimension as well. For a system with emergent Lorentz
symmetry (z = 1 critical points for instance), the symme-
try of the stress-energy tensor means that the energy cur-
rent T0i with i = 1, . . . , d is also the (conserved) momen-
tum density Ti0. The energy expansion potential then

reads GE(β) = −
∫ β

dβ
∫
ddx 1

d

∑
i〈T0i(x)T0i(0)〉, which

can be related to pressure [50, 52]. In a non-relativistic
system with a single species of particles and current pro-
portional to (conserved) momentum, there is a particle
expansion potential; the interacting Bose gas is one such
example. The particle Drude weight Dc is then entirely
determined by the sum rule

∫
dω
π σ(ω) = Dc = n

m with
n the density and m the mass [56]. This immediately
implies that the expansion potential is simply related to
pressure GQ = − Ω

Vm = P
m with Ω the thermodynamic

grand potential and V the volume – this is a consequence
of Galilean invariance [59]. The Drude thermopower is
then given by 〈JQJE〉/V = T

m (u + P ) with u the inter-
nal energy density. These quantities can be computed
explicitly for the Lieb-Liniger gas in one dimension as a
function of T and µ (or particle density) [60]. This and
other simple cases where the expansion potentials can
be computed explicitly, such as non-interacting systems
and Luttinger liquids, are given in Supplemental Mate-
rial [41].

Nature of the steady-state. Interestingly, the varia-
tion of expansion potential ∆G provides a lower bound
for the point current j(x) [50]. However, the more general
relation between spatially integrated and point currents
remains mysterious. We find numerically that both the
energy density nE(x, t) and the energy current jE(x, t)
in the XXZ spin chain at half-filling become functions
of x/t at large enough times, with nontrivial limiting
shapes [41]. In the low-temperature limit described by
conformal field theory [47, 49], we expect a uniform
steady-state local current jE(x) = ∆G

2v = π
12 (T 2

L − T 2
R)

over a region of size 2vt with v the spinon velocity. How-
ever, we find that the rescaled functions jE(x/t), nE(x/t)
even at moderate temperatures are very far from that pic-
ture: in general, there is no nonzero range of the reduced
variable x/t for which jE(x/t) is constant, indicating
that the steady-state region spreads sub-ballistically, and
there are no transient “shock-waves” like those expected
in the presence of Lorentz invariance [52, 61] separating
the uniform steady-state region from the reservoirs. It
is an interesting problem for future work to determine
more properties of the limiting function jE(x/t), pos-
sibly by adapting the recently developed hydrodynamic
approaches for relativistic systems [52, 61] to incorporate
the additional conserved quantities of integrable lattice
spin chains.

Discussion. In closing, we emphasize that the expan-
sion potentials generalize familiar concepts in the pres-
ence of either Galilean or Lorentz invariance to consid-
erably more complex physical situations. Lattice models
for which a current is conserved in the sense of (2) in-
clude the XYZ spin chain, the q-Bose gas [28], and the
supersymmetric point of the t-J model [62]. For systems
where the conservation law does not strictly hold, such as
the Bose-Hubbard model at small occupancy where rare
double occupancies spoil the mapping to the XXZ model,



5

Joule heating and other strongly non-equilibrium physics
could be computed using perturbation theory from the
expansion-potential case. It would be interesting to con-
nect the expansion potential to other nonequilibrium ef-
fects, such as “quantum quenches” of a coupling [63],
which can reveal topological phases [64, 65]. For lat-
tice models with conserved energy current but without
full integrability, the expansion potential still exists and
could be computed numerically at equilibrium, while it
would serve as a useful constraint on predictions about
far-from-equilbrium energy flow [61].
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