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Experimental evidence for Majorana bound states largely relies on measurements of the tunnel-
ing conductance. While the conductance into a Majorana state is in principle quantized to 2e2/h,
observation of this quantization has been elusive, presumably due to temperature broadening in the
normal-metal lead. Here, we propose to use a superconducting lead instead, whose gap strongly
suppresses thermal excitations. For a wide range of tunneling strengths and temperatures, a Ma-
jorana state is then signaled by symmetric conductance peaks at eV = ±∆ of a universal height
G = (4 − π)2e2/h. For a superconducting scanning tunneling microscope tip, Majorana states
appear as spatial conductance plateaus while the conductance varies with the local wavefunction
for trivial Andreev bound states. We discuss effects of nonresonant (bulk) Andreev reflections and
quasiparticle poisoning.

Introduction.—Motivated by possible applications in
quantum information processing [1, 2], topological super-
conductors hosting Majorana bound states are currently
under intense investigation [3–5]. Based on the super-
conducting proximity effect, various realistic platforms
have been proposed to support Majorana states includ-
ing topological insulators [6, 7], semiconductor nanowires
[8, 9], and atomic chains [10–16]. Although these systems
are available in the laboratory, the experimental observa-
tion of unique Majorana signatures remains challenging.

A widely employed diagnostic tool is the tunneling con-
ductance of normal metal–superconductor junctions, in
which Majoranas manifest themselves as characteristic
zero-bias peaks [17, 18]. Experimental signatures con-
sistent with theoretical predictions have been observed
in quantum wires [20–22] and atomic chains [23, 24].
However, it is a major challenge in these experiments
to uniquely distinguish Majoranas from conventional
fermionic subgap states. Spin-polarized subgap states
such as Shiba states bound to magnetic impurities [25–28]
or Andreev bound states in a magnetic field can exhibit
a zero-energy crossing as a function of exchange inter-
action or Zeeman energy [29–31]. Thus, such fermionic
states may accidentally occur at zero energy and give
rise to similar conductance features. As magnetic im-
purities or external magnetic fields are also required for
the most relevant realizations of topological superconduc-
tors, such trivial conductance peaks can generally not be
disregarded.

In contrast to fermionic subgap states, Majoranas ex-
hibit a celebrated quantized zero-bias conductance of
2e2/h [17–19]. Unfortunately, this has so far proved dif-
ficult to observe in experiment. The Fermi distribution
in the metal lead is smooth on the scale of the temper-
ature T , which strongly limits the experimental energy
resolution. When temperature is larger than the tunnel
coupling, the Majorana peak is broadened and the zero-
bias conductance is reduced. Even at low temperatures
(e.g., T = 60 mK in Ref. [20]), it may be difficult to ob-
serve the quantized peak height as multichannel effects

limit the relevant tunneling strength [32]. Quasiparticle
poisoning may also lead to deviations from quantization.
A fermion-parity breaking rate exceeding the tunnel cou-
pling broadens the peak and reduces its height. This
requires one to work at temperatures below the lowest
fermionic excitations in the topological superconductor.

In this paper, we show how a robust conductance sig-
nature of Majorana bound states can be obtained by em-
ploying superconducting leads. In striking contrast to
normal-state contacts, effects of thermal broadening are
strongly suppressed for a superconducting lead because
quasiparticle excitations are exponentially suppressed ∼
exp(−∆/T ) by its superconducting gap ∆. Majorana
bound states no longer appear as zero-bias anomalies but
rather as two symmetric peaks in the differential conduc-
tance G = dI/dV which occur when the BCS singularity
of the superconducting gap lines up with the Majorana
bound state, i.e., at the thresholds eV = ±∆. These
peaks have a universal height

GM = (4− π)
2e2

h
, (1)

which persists over a wide range of tunnel couplings.
This yields particularly striking evidence when employ-

ing a scanning tunneling microscope (STM) with a super-
conducting tip which allows for spatially resolved mea-
surements. This has previously been used to map out
bound state wavefunctions in conventional and unconven-
tional superconductors [23, 24, 33–36]. Here we propose
that such maps can clearly distinguish between Majo-
ranas and trivial zero-energy bound states. Indeed, the
peak conductance is uniform in the vicinity of Majorana
states and a conductance map exhibits a characteristic
mesa or plateau structure. In contrast, the conductance
of trivial subgap states exhibits a spatial pattern which
is governed by the bound-state wavefunction.

In addition, STM measurements allow for systematic
studies as a function of tunneling strength by varying
the tip height. It was recently demonstrated [37] that
this can be exploited to probe quasiparticle relaxation
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processes. In the present context, varying the tunnel-
ing strength may help to identify Majorana signatures
despite competing effects such as nonresonant Andreev
reflections or quasiparticle poisoning.

Subgap conductance for Majorana bound state.—At
subgap voltages eV < ∆ + ∆s and zero temperature, the
tunneling current between superconducting tip or lead
and substrate (with gap ∆s) flows by multiple Andreev
reflections. Near the threshold e|V | = ∆, the differential
conductance dI/dV is dominated by single Andreev re-
flections from the sample. For tip locations far from the
zero-energy bound state in the sample, this yields the
familiar peak in dI/dV due to the singular densities of
states of incoming electrons and outgoing holes. In the
vicinity of the bound state, tunneling is further enhanced
by the zero-energy resonance [37–39].

Formally, the subgap current due to single Andreev
reflections from the sample can be expressed as [40–42]

I(V ) = 4eπ2t4
∫

dω

2πh̄
Tr[Geh(r, ω)G†eh(r, ω)]

× ρ(ω−)ρ(ω+)[nF (ω−)− nF (ω+)], (2)

where t is the amplitude for tip-substrate tunneling,
ω± = ω ± eV , nF (ω) denotes the Fermi function, and
the superconducting tip enters through its BCS density
of states ρ(ω) = ν0θ(|ω| − ∆)|ω|/

√
ω2 −∆2 with ν0 the

normal density of states at the Fermi energy. Spin or
subband degrees of freedom are accounted for by a pos-
sible matrix structure of the anomalous retarded Green
function Geh(r, ω) of the substrate at the tip position r.
In terms of its Lehmann representation, Geh(r, ω) has
contributions from both the bound state and the above-
gap continuum. In the following, we first consider the
resonantly enhanced Andreev current from a Majorana
bound state and subsequently discuss the contribution of
the quasiparticle continuum.

For e|V | ' ∆, we can approximate nF (ω−)−nF (ω+) '
sgnV in Eq. (2), up to corrections of order exp(−∆/T ).
This insensitivity to temperature is a key advantage of
superconducting leads. The bound-state contribution to
the substrate Green function is

G(r, ω) =
〈r|ψ〉〈ψ|r〉
ω + iΓ/2

. (3)

Here, 〈r|ψ〉 = [ζ(r),±Θζ(r)]T denotes the local
Bogoliubov–de Gennes wavefunction of the Majorana
bound state with Θ the time-reversal operator. The
broadening Γ = 2i 〈ψ|Σ|ψ〉 of the bound state is induced
by the tunnel coupling to the lead. The corresponding
self energy Σ = −iπt2diag[ρ(ω−), ρ(ω+)] is diagonal as
Andreev reflections in the lead can be neglected near
e|V | = ∆.

Inserting Eq. (3) into (2) yields (for V > 0) [37, 43]

I =
e

h

∫
dω

Γe(ω)Γh(ω)

ω2 + [Γe(ω) + Γh(ω)]2/4
(4)

in terms of the electron and hole tunneling rates
Γe/h(ω) = 2πt2|ζ|2ρ(ω∓). While the integrand in Eq. (4)
has a resonance denominator, its behavior is peculiar due
to the strong energy dependence of the tunneling rates.
Specifically, the square-root singularity of the BCS den-
sity of states implies that the integrand involves a charac-
teristic energy scale ωt = (πt2ν0|ζ(r)|2

√
∆/2)2/3 which

depends on a fractional power of the tunneling rate from
a normal tip γn = 2πt2ν0|ζ(r)|2. In the weak-tunneling
regime ωt � ∆, we can write

I =
4e

h

∫ η

−η

dω√
η2 − ω2

ω3
t

ω2 + ω3
t

(
1√
η−ω + 1√

η+ω

)2 , (5)

for 0 < η � ∆, where η = eV −∆ measures the voltage
from the threshold ∆. In the vicinity of the threshold,
η � ωt, the resonance denominator is dominated by the
second term and we obtain I(V ) = (4 − π)(2e/h)(eV −
∆)θ(eV −∆) and thus Eq. (1). The entire peak lineshape

dI

dV
= (4− π)

2e

h
Λ

(
eV −∆

ωt

)
, (6)

involves the function Λ(x) which vanishes for x < 0,
jumps to Λ(0+) = 1, and falls off with a small negative
differential conductance tail at large x, cp. Fig. 1.

Thus, the differential conductance between a conven-
tional superconductor and a Majorana state exhibits a
peak which is independent of tunneling strength and Ma-
jorana wavefunction. While the peak height is close to
the quantized Majorana peak height 2e2/h for a normal-
metal lead, there are several differences: (a) There are
two symmetric, finite-bias Majorana peaks at eV = ±∆
rather than a single zero-bias peak, (b) the conductance
peak is strongly asymmetric with a discontinuous step at
the threshold, and (c) the width of the peak is set by ωt
with its sublinear dependence on junction transparency.

The threshold discontinuity in the conductance per-
sists even when including the contributions of the quasi-
particle continuum in the substrate Green function. To
see this, we model the substrate superconductor by a
2 × 2 Nambu Green function g(ω, r). For a topolog-
ical substrate, this is appropriate for perfect spin po-
larization (spinless p-wave superconductor). Including
the tunnel coupling to the tip through the self energy
Σ as given above, the substrate Green function becomes
G = g[1 − Σg]−1. We first focus on the vicinity of the
bound state where the conductance is dominated by An-
dreev reflections from the bound state. By straightfor-
ward calculation and expansion of g in ω [40], we find

G(r, ω) =
〈r|ψ〉〈ψ|r〉

ω − λ(ω) + iΓ/2
. (7)

This differs from the pure bound-state contribution by
the additional term λ(ω) = π2t4ω det g(ω, r)ρ(ω−)ρ(ω+)
in the denominator which involves the determinant (in
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FIG. 1. (color online) (a) Differential conductance vs bias
voltage near the threshold eV = ∆ for Majorana (solid line)
and Andreev state with |u| = |v| (dashed line). For a Majo-
rana, the conductance exhibits a step of height (4− π)2e2/h
at the threshold. For an Andreev state, the conductance has
a smooth onset, cf. Eq. (10). Both peaks have a negative-
differential conductance dip at high voltages. Inset: Graph
of f(x) as defined in the main text. (b) Spatial conduc-
tance maps for Majorana (left) and Andreev state (right) for
ωt(0)/δ∆ = 5. The Majorana gives rise to a conductance
plateau whereas the Andreev state exhibits a pattern reflect-
ing the spatial dependence of the ratio (u/v)2. The Majorana
conductance drops far from the bound state when the broad-
ening exceeds ωt.

particle-hole space) of the bare substrate Green func-
tion. While the determinant of the bound-state contri-
bution to the Green function vanishes, this is no longer
the case when including the quasiparticle continuum. At
subgap energies away from bound states, the Green func-
tion g(ω, r) is a hermitian 2×2 matrix, so that det g(ω, r)
and hence λ(ω) are real. Thus, we find

IM (V ) =
4e

h

∫ η

−η

dω√
η2 − ω2

ω3
t

(ω − λ)2 +
( ω

3/2
t√
η−ω +

ω
3/2
t√
η+ω

)2 .
(8)

For a Majorana state, the real part of the resonance
denominator must vanish exactly at ω = 0. Indeed,
particle-hole symmetry further constrains det g(ω, r) to
be an even function of ω which can be approximated
as a constant at small ω (see [40], where this conclu-
sion is confirmed by model calculations). Then, we find

λ(ω) ∝ t4ω/
√
η2 − ω2 near the threshold. Even with this

term, the denominator in Eq. (8) remains dominated by

the divergent tunnel broadenings ∼ ω3/2
t /
√
η ± ω and the

discontinuous conductance step as well as the universal
value of the threshold conductance in Eq. (1) persist.

In experiment, the square-root singularity of the BCS
density of states of the tip may be broadened intrinsi-
cally due to higher-order processes or effectively due to
experimental resolution. The universal threshold con-
ductance persists as long as ωt exceeds this broadening.
This condition also determines the spatial extent of the
conductance plateau, r <∼ 4ξ ln[ωt(0)/δ∆]/3, where ξ is
the Majorana localization length, ωt(0) denotes the value
of ωt at the center of the Majorana bound state, and δ∆
is the broadening of the tip density of state, cf. Fig. 1(b).
Of course, a well-resolved Majorana peak also requires
ωt � ∆s, i.e., the tunnel broadening needs to be small
compared to the induced gap. If the peak is not fully
resolved, it is suppressed below the universal value and
its height may vary as a function of space.

For tip locations far from the bound state, the tunnel-
ing conductance is dominated by conventional (“‘nonres-
onant”) Andreev reflections. These still yield a threshold
peak due to the singular tip density of states in Γe and
Γh, but are not enhanced by a bound-state resonance.
For a one-dimensional p-wave superconductor, this con-
ductance peak has height ' 1.3GM and width ∼ ∆T 2

quadratic in the junction transparency T ∝ t2 [40]. Ob-
serving the conventional Andreev peak thus requires that
the broadening of the tip density of states is small com-
pared to ∼ ∆T 2. This is a much more stringent condition
than for the resonant Andreev peak as the width of the
bound-state peak ωt ∝ t4/3 involves a lower power of t.
We note that in a typical STM experiment [37], conven-
tional Andreev peaks can be resolved only for small tip-
sample distances, while bound-state signatures persist to
much weaker tunnel couplings.

Subgap conductance for Andreev bound state.—These
results should be contrasted with those for trivial zero-
energy Andreev bound states. For concreteness, con-
sider an s-wave superconductor with conserved spin [44],
whose Bogoliubov–de Gennes description decomposes
into two independent spin sectors that interchange un-
der particle-hole transformations. A zero-energy An-
dreev state corresponds to two Bogoliubov–de Gennes
wavefunctions, 〈r|ψ+〉 = [u(r), v(r)]T and 〈r|ψ−〉 =
[Θv(r),−Θu(r)]T, one in each sector. An analogous cal-
culation [40] yields the threshold current

IA(V ) = 2IM (V )f(|u(r)|2/|v(r)|2). (9)

Reflecting the two zero-energy wavefunctions, the max-
imal threshold conductance is twice that in the Majo-
rana case, GA = 2GM , and realized for the particle-
hole symmetric case |u| = |v|. In general, the peak
conductance depends on the ratio of electron and hole
wavefunction at the tip position. This dependence
is captured by the dimensionless function f(x) =
2x
4−π

∫ 1

−1 dz
√

1− z2/(x
√

1− z +
√

1 + z)2 which takes on



4

values between 0 and 1 and is plotted in Fig. 1(a). The
function satisfies f(x) = f(1/x) as the two spin sectors
contribute equally. In the limit of large particle-hole
asymmetry, GA ∼ GMmin(|u/v|2, |v/u|2) � GM . The
lineshape of the conductance peak is similar to the Ma-
jorana peak, with a width of order ωt upon replacing ζ(r)
by max{u(r), v(r)}.

Our results imply that the height of the conductance
peak allows for a clear distinction between a conventional
Andreev bound state and a Majorana state. Even when
f(u2/v2) ∼ 1/2 for one location of the STM tip, mov-
ing the tip to another location modifies the conductance
peak height for a conventional bound state, tracking the
ratio of electron and hole wavefunctions. In contrast, the
conductance map exhibits a characteristic mesa struc-
ture for a Majorana state, see Fig. 1(b). In non-STM
tunneling experiments, changes of parameters (e.g., gate
voltages) which affect the Majorana wavefunction should
leave the peak height unchanged for a Majorana but not
for a conventional Andreev bound state.

As there is no locking of the bound state to zero en-
ergy, also the continuum contribution is distinctly differ-
ent for conventional Andreev states. The two spin sectors
are described by separate 2 × 2 Nambu Green functions
which map into one another under particle-hole transfor-
mations. This is quite unlike the Majorana Green func-
tion which maps onto itself. For each sector, det g(ω, r) is
therefore no longer an even function of ω and will gener-
ally have a singular contribution ∝ 1/ω at the threshold

so that λ(ω) ∼ T 2∆s∆/
√
η2 − ω2. These general ar-

guments can be confirmed explicitly for Shiba states in
s-wave superconductors [40]. Near the threshold, the res-
onance denominator in the expression for the current is
now dominated by λ(ω). As illustrated in Fig. 1 by a
numerical evaluation of the current, this suppresses the
conductance step. Analytically, we find that just above
the threshold, the conductance increases linearly,

GA(V ) ∼ 2e2

h

1

T 2

eV −∆

∆
θ(eV −∆), (10)

and matches with the conductance obtained from Eq. (9)
for eV − ∆ � T 2∆. We note that this suppression of
the conductance step depends on T and can thus be
probed by varying the tip-sample distance in an STM
experiment. This may serve as an additional signature
to distinguish between Majorana and conventional An-
dreev bound states.

Effects of quasiparticle poisoning.—So far, we only in-
cluded bound-state broadening by the tunneling contact.
At finite temperatures, the bound-state occupation also
changes by inelastic transitions to other subgap states or
the quasiparticle continuum in the sample [45]. We ac-
count for these processes by an additional contribution
iΓqp/2 to the self energy of the bound-state Green func-
tion Eq. (7). This does not affect the Andreev current
at the threshold, where the denominator is dominated

tot
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FIG. 2. Total threshold conductance for a Majorana state
(tot) along with the single-particle contribution (sp) as a func-
tion of ωt. The single-particle contribution affects the con-
ductance only a in a window of transmission values, where
ωt ∼ Γqp. While the maximum is of order 0.2GM , the po-
sition of the maximum in tunneling strength depends sensi-
tively on temperature (through Γqp). Inset: Line shape of
the total conductance as a function of voltage away from the
threshold, for different ratios of ωt/Γqp.

by the diverging tunnel coupling. However, the over-
all weight of the peak is reduced by a narrowing of the
linewidth by a factor (ωt/Γqp)2 once Γqp > ωt, see Fig.
2 (inset).

In addition, quasiparticle poisoning generates a single-
electron current Is which involves tunneling of single
particles followed by inelastic transitions from the zero-
energy bound state to other bound states or the quasipar-
ticle continuum [37]. For a Majorana state, we find near
the threshold eV = ∆ (with analogous results applying
for Andreev bound states) [40]

IsM =
e

4h

∫
dω

Γqp[Γe(ω) + Γh(ω)]

ω2 + [Γqp + Γe(ω) + Γh(ω)]2/4
. (11)

For weak and strong tunneling, this yields [40]

GsM ∼
2e2

h

{
(ωt/Γqp)

3/2
ωt � Γqp,

Γqp/ωt ωt � Γqp.
(12)

Figure 2 shows that this single-particle contribution as-
sumes a maximum of ∼ 0.2GM when ωt ∼ Γqp. However,
it can be easily made negligible by tuning the system
away from this maximum through varying temperature
or tunneling strength.

Conclusions.—We show that conductance measure-
ments with superconducting leads constitute a promising
technique to identify Majorana states. The presence of
Majoranas is signaled by conductance peaks of universal
height which are largely unaffected by thermal broaden-
ing, a key obstacle in previous experiments with normal-
metal contacts. We discuss strategies to systematically
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rule out parasitic effects such as quasiparticle poisoning
or trivial subgap states. The proposed setup is read-
ily available in the laboratory and, in fact, has already
been realized in previous experiments [23, 24, 46, 47].
(Notice, however, that temperature was comparable to
the induced gap in the STM experiments performed to
date, precluding observation of the universal conduc-
tance, and that the nanowire experiments focused on
zero-bias peaks.) Our results also imply that quasipar-
ticle poisoning rates can be extracted from systematic
measurements as a function of tip height and tempera-
ture.

Acknowledgments.—We thank P. Brouwer, K. Franke,
B. Heinrich, J. Meyer, Y. Oreg, and M.-T. Rieder for
stimulating discussions. We acknowledge financial sup-
port by the Helmholtz Virtual Institute “New states of
matter and their excitations,” SFB 658, SPP1285 and
SPP1666 of the Deutsche Forschungsgemeinschaft, the
Humboldt Foundation, the Minerva Stiftung, as well as
DOE contract DE-FG02-08ER46482 at Yale University.
We are grateful to the Aspen Center for Physics, sup-
ported by NSF Grant No. PHYS-106629, for hospitality
while this line of work was initiated.

[1] A. Kitaev, Ann. Phys. 303, 2 (2003).
[2] C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S.

Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[3] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[4] C.W.J. Beenakker, Annu. Rev. Con. Mat. Phys. 4, 113

(2013).
[5] S.R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137

(2015).
[6] L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407

(2008).
[7] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R)

(2009).
[8] R.M. Lutchyn, J.D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[9] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105, 177002 (2010).
[10] S. Nadj-Perge, I.K. Drozdov, B.A. Bernevig, and A. Yaz-

dani, Phys. Rev. B 88, 020407(R) (2013).
[11] B. Braunecker and P. Simon, Phys. Rev. Lett. 111,

147202 (2013).
[12] M.M. Vazifeh and M. Franz, Phys. Rev. Lett. 111,

206802 (2013).
[13] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys.

Rev. Lett. 111, 186805 (2013).
[14] F. Pientka, L.I. Glazman, and F. von Oppen, Phys. Rev.

B 88, 155420 (2013).
[15] Y. Kim, M. Cheng, B. Bauer, R.M. Lutchyn, and S. Das

Sarma, Phys. Rev. B 90, 060401(R) (2014).
[16] Y. Peng, F. Pientka, L.I. Glazman, and F. von Oppen,

Phys. Rev. Lett. 114, 106801 (2015).
[17] K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103,

237001 (2009).
[18] K. Flensberg, Phys. Rev. B 82, 180516 (2010).

[19] M. Wimmer, A.R. Akhmerov, J.P. Dahlhaus, C.W.J.
Beenakker, New J. Phys. 13, 053016 (2011).

[20] V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M.
Bakkers, and L.P. Kouwenhoven, Science 336, 1003
(2012).

[21] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Nature Phys. 8, 887 (2012).

[22] H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T.
Deng, P. Caroff, H.Q. Xu, and C.M. Marcus, Phys. Rev.
B 87, 241401(R) (2013).

[23] S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J.
Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Sci-
ence 346, 602 (2014).

[24] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B.W. Hein-
rich, K.J. Franke, Phys. Rev. Lett. 115, 197204 (2015).

[25] L. Yu, Acta Phys. Sin. 21, 75 (1965).
[26] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[27] A.I. Rusinov, Zh. Eksp. Teor. Fiz. Pisma Red. 9, 146

(1968) [JETP Lett. 9, 85 (1969)].
[28] A.V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod.

Phys. 78, 373 (2006).
[29] K.J. Franke, G. Schulze, and J.I. Pascual, Science 332,

940 (2011).
[30] R.S. Deacon, Y. Tanaka, A. Oiwa, R. Sakano, K.

Yoshida, K. Shibata, K. Hirakawa, and S. Tarucha, Phys.
Rev. Lett. 104, 076805 (2010).

[31] E.J.H. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber
and S. De Franceschi, Nat. Nano. 9, 79 (2014).

[32] F. Pientka, G. Kells, A. Romito, P.W. Brouwer, F. von
Oppen, Phys. Rev. Lett. 109, 227006 (2012).

[33] A. Yazdani, B.A. Jones, C.P. Lutz, M.F. Crommie, and
D.M. Eigler, Science 275, 1767 (1997).

[34] A. Yazdani, C.M. Howald, C.P. Lutz, A. Kapitulnik, and
D.M. Eigler, Phys. Rev. Lett. 83, 176 (1999).

[35] E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H.
Eisaki, S. Uchida, and J.C. Davis, Nature (London) 411,
920 (2001).

[36] S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, X.-C. Ma, J. Li,
W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett.
100, 226801 (2008).

[37] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B.W. Hein-
rich, K.J. Franke, Phys. Rev. Lett. 115, 087001 (2015)

[38] D. Badiane, M. Houzet, J.S. Meyer, Phys. Rev. Lett. 107
177002 (2011)

[39] P. San-Jose, J. Cayao, E. Prada, R. Aguado, New. J.
Phys. 15, 075019 (2013)

[40] Supplementary Material
[41] J.C. Cuevas, A. Mart́ın Rodero, and A. Levy Yeyati,

Phys. Rev. B, 54, 7366 (1996).
[42] I. Martin and D. Mozyrsky, Phys. Rev. B 90, 100508

(2014).
[43] A. Levy Yeyati, J.C. Cuevas, A. López-Dávalos, and A.
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