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Current nonequilibrium Monte Carlo methods suffer from a dynamical sign problem that makes
simulating real-time dynamics for long times exponentially hard. We propose a new ‘Inchworm
Algorithm’, based on iteratively reusing information obtained in previous steps to extend the prop-
agation to longer times. The algorithm largely overcomes the dynamical sign problem, changing the
scaling from exponential to quadratic. We use the method to solve the Anderson impurity model in
the Kondo and mixed valence regimes, obtaining results both for quenches and for spin dynamics
in the presence of an oscillatory magnetic field.

The nonequilibrium physics of quantum many-body
systems is a central topic of current research [1]. Ex-
perimentally, the application of strong currents through
quantum dots [2], molecular junctions [3] and extended
systems, the optical excitation of high densities of car-
riers above band gaps of Mott insulators [4] and high
amplitude terahertz coupling to phonon modes [5] have
revealed exciting new physics. In cold atoms sudden pa-
rameter quenches have also been studied [6–8]. While
remarkable experimental progress has been made, theory
faces a crucial limitation: numerical calculations of time-
dependent and nonequilibrium problems suffer from an
exponential scaling of computational cost with simulation
time. In different formulations the problem manifests in
different ways: as a mixing of low- and high-energy states
as time progresses in truncated wavefunction methods
like time dependent NRG [9] or DMRG [10–12], as an
exponential number of operators needed to reach a given
accuracy in the hierarchical equations of motion [13–17],
or as a ‘dynamical’ sign problem in nonequilibrium quan-
tum Monte Carlo (QMC) [18–21]. In practice, the expo-
nential scaling in known numerically exact methods has
prevented accurate numerical calculations of the long-
time behavior of nonequilibrium correlated systems.

Diagrammatic QMC methods, which provide numeri-
cally exact solutions by stochastically sampling a pertur-
bation series, have been particularly fruitful in elucidat-
ing the physics in equilibrium, where the problem can be
formulated in imaginary time [22–30]. Straightforward
extension of these methods to nonequilibrium [18–21] re-
quires estimation of integrals that contain combinations
of oscillating exponentials exp(iHt); as the integrals ex-
tend over longer time ranges, numerical difficulties limit
the times accessible in the strong coupling regime to the
order of the typical tunneling timescale. Longer times
can be reached by sampling corrections to semi-analytic
theories such as the none- and one-crossing approxima-
tions (NCA [31, 32] and OCA [33–35]), by explicit sum-
mation over Keldysh indices followed by a continuation
on the complex plane [36], and with memory function

techniques [37–40]. Nevertheless, all of these methods
encounter an exponential wall as time is increased, limit-
ing their applicability to relatively short time dynamics
or to the weak correlation regime.

In this Letter we present an algorithm whose computa-
tional cost scales quadratically rather than exponentially
with time, allowing controlled numerical access to the
long-time behavior of strongly correlated quantum sys-
tems. The algorithm is based on iteratively reusing in-
formation from shorter time propagation to obtain results
for longer times, is generally applicable to any diagram-
matic method and has a straightforward interpretation in
terms of self-consistent skeleton expansions. The method
presented here deals only with the dynamical sign prob-
lem, not with the intrinsic fermionic one, which limits
access to certain systems even in equilibrium. However,
a spatial inchworm algorithm (as opposed to the tempo-
ral one presented here) might make headway against that
problem. We implement the algorithm for the Anderson
impurity model (AIM) in the strongly correlated Kondo
and mixed-valence regimes, and show that it captures the
long-time spin dynamics after a quantum quench and in
the presence of an oscillating magnetic field. While the
results presented here pertain to impurity models, the
algorithm itself should prove useful beyond this context
in the more general quantum many-body setting.

The crucial object in the algorithm is the Keldysh-
contour propagator Gαα′(tf , ti) giving the transition am-
plitude between state α at initial contour time ti and
state α′ at final contour time tf in the presence of a
Hamiltonian H = H0(t) + V (t):

Gαα′ (tf , ti) ≡ 〈α|TrB

{
ei
´ tf
ti

dt̃H0(t̃)+V (t̃)

}
|α′〉 . (1)

Ref. 35 discusses such propagators and their relation-
ship to observables. H0 is assumed to be an exactly
solvable Hamiltonian and one studies G by an expan-
sion in iV , as illustrated for an impurity model expan-
sion (where all propagators can be collapsed onto a single
line) in Fig. 1. Panel (a) represents a bare expansion,
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Figure 1. Comparison of diagrams sampled in previous ap-
proaches (bare expansion, panel (a) [18, 19] and bold expan-
sion, panel (b) [31, 32]) to diagrams sampled in new approach
(c); and diagrams leading to dynamical sign problem in pre-
vious methods (d). Thick lines: full propagators. Thin lines:
bare propagators. Medium (‘bold’) lines: propagators result-
ing from analytical resummation of subset of diagrams (here,
NCA). Wiggly lines: hybridization lines. Arrows indicate t↑.

where G (thick line) is evaluated by summing all possi-
ble interaction lines in terms of a bare propagator (thin
line). Panel (b) represents a particular bold-line expan-
sion, where an approximate propagator (represented by
a medium or ‘bold’ line) containing a subset of the inter-
actions is evaluated semi-analytically, and all corrections
are summed in terms of the bold propagator. Impor-
tantly, G is contour causal: in the expansion only vertices
V (t̃) for which ti < t̃ < tf occur. The factors of iV cause
a dynamical sign problem, and in the approaches used
to date the expansion order (number of iV insertions)
is proportional to the final time simulated. Our algo-
rithm avoids this by using a kind of skeleton expansion:
it exploits the contour causal nature of G to construct
an exact propagator for longer times in terms of an exact
propagator for shorter times, iteratively increasing the
time up to which propagators are known. We observe
that the sign problem does not worsen as a function of
time, resulting in quadratic algorithmic scaling overall.

The algorithm, which we illustrate in Fig. 1 (c), be-
gins from the assumption that Gαα′ (t1,t2) is known for
all values of t1 and t2 less than a designated time t↑. We
now consider the terms appearing in a computation of
Gαα′ (tf , ti) for tf > t↑. If no interactions occur or all
interactions occur before t↑, the term can be subsumed
into the (known) propagation from ti to t↑, followed by
a bare propagation from t↑ to tf , as illustrated in dia-
gram 1 of Fig. 1 (c). If interactions occur after t↑ but
no interaction lines connect times after t↑ to times be-
fore t↑, the propagation to t↑ is captured by the known
Gαα′ (t↑, ti), with the usual perturbation in V required to
capture propagation in the interval t↑ → tf (see diagram
2 ). Finally, terms with interaction lines spanning t↑ can

be subsumed into diagrams with exact propagators be-
fore t↑ and bare propagators after t↑ by absorbing any
interaction line that is not connected to a line reaching
past t↑ in the exact propagator (diagram 3 ).

By summing these three classes of diagrams ( 1 , 2 ,
3 ) we count each bare diagram exactly once, producing
a formally exact solution for the propagator Gαα′ (t1,t2).
The procedure crucially relies on the contour-time causal-
ity of the propagator: Gαα′ (t1, t2) contains all possible
diagrams with interaction lines between t2 and t1 but no
interaction lines outside of this interval.

The main advantage is that improper repetitions of
simple inclusions (see panel (d) of Fig. 1) are absorbed
in the propagator for t < t↑ and only need to be sam-
pled for t > t↑. The number of these diagrams grows
exponentially as a function of propagation time, causing
the dynamical sign problem: consider that the number
of possible locations for inclusions increases roughly lin-
early with the length of the propagation time. Since each
individual inclusion might be removed, this generates an
exponential number of possible diagrams. t↑ is a free pa-
rameter: as t↑ is lowered to ti, the procedure reverts to
the standard bare expansion in V (see Fig. 1(a)). As t↑
is increased towards tf , fewer diagrams are sampled but
the exact propagator has to be known for longer times.

The possibility of obtaining propagators based on cor-
rections to propagators for smaller times suggests a nu-
merical algorithm: starting from the knowledge of the ex-
act propagators within a short time interval (ti, t

n
f ) with

tnf = ti + n∆t, e.g. as obtained from a bare Monte Carlo
simulation, we calculate propagators for the longer in-
terval (ti, t

n
f + ∆t) = (ti, t

n+1
f ) by setting t↑ = tnf and

sampling again the three classes of diagrams described
in Fig. 1c. The process is iteratively repeated, gradually
increasing the interval on which propagators are known
by ‘inching’ along the Keldysh contour. These successive
small steps which gradually increase tf have led us to
term this procedure the inchworm algorithm. We note in
passing that at the limit ∆t→ 0 the quantity summed in
the expansion introduced above becomes a product of the
proper propagator self-energy and the full propagator.

Since Gαα′ (tf , ti) has two time arguments, propaga-
tion must be carried out in both temporal directions. To
reach a final time t at a discretization of ∆t requires
1
4

(
t

∆t

)2 interdependent simulations when causality and
time-reversal symmetry are taken into account, resulting
in an algorithm that scales at least quadratically. To con-
trol the complexity of the computation, it is also useful
to limit the maximum order of diagrams to be sampled
and then verify convergence with respect to increasing
the diagram order [25, 32]. It can be shown that inch-
worm QMC truncated at a given order corresponds as
∆t → 0 to a self-consistent skeleton expansion with the
self-energy truncated to the same order (since the in-
cluded terms are given by all proper inclusions up to
the respective order, in terms of propagators containing
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the same). Based on experience from these methods [41]
we may therefore expect that most contributions at long
times will include interaction lines at only a limited, time-
independent range from the final time, as illustrated in
diagram 4 of panel (c) in Fig. 1.

We illustrate the inchworm scheme with the example
of an AIM with a time and spin dependent local field:

H (t) =
∑

σ∈{↑,↓}

εσ (t) d†σdσ + Un↑n↓ (2)

+
∑
σk

εσka
†
σkaσk +

∑
aσk

(
Vσka

†
σkdσ + H.C.

)
.

εσ are on-site level energies, σ ∈ {1,−1} a spin in-
dex, and U is the on-site Coulomb interaction. εσk
and Vσk are fully defined by the dot–bath coupling,
which we set to Γ (ω) = 2π

∑
k V
∗
σkVσkδ (ω − εk) = Γ

/
[(

1 + eν(ω−Ωc)
) (

1 + e−ν(ω+Ωc)
)]

with ν = 10/Γ and
ΩC = 10Γ. We simulate a coupling quench, i.e. the dy-
namics of a dot initially decoupled from the bath, with
the coupling turned on instantaneously at time zero. We
use the hybridization expansion, where the interaction
Hamiltonian V is taken to be the final term in Eq. 2 (a
detailed review is found in Ref. 28).

In the top panel of Fig. 2 we show the time-evolution of
the four populations (diagonal density matrix elements)
after a quench, as described by the bare hybridization
expansion for times t . 1.5 (light lines) and by our inch-
worm algorithm (dark lines). The system, initially in
state | ↑〉, slowly relaxes to a configuration in which ↑
and ↓ are degenerate. We observe that results for both
numerically exact algorithms agree within errors, but for
t & 1, bare QMC data becomes noisy.

The bottom panel shows that the bare error increases
exponentially in time (for the constant simulation time
per point used here). This is a direct consequence of the
dynamical sign problem. In contrast, the inchworm error
plateaus, allowing access to significantly longer times. To
account for the propagation of errors from short times to
longer times, the inchworm error estimate has been ob-
tained from the standard deviations between independent
runs with uncorrelated statistical errors. The plateau of
the noise implies that the average sign stays constant as
a function of time, and that there is no observable error
amplification due to repeated use of propagators from
earlier times. We have verified that significantly larger
errors than those used here do not result in a bias (not
shown). Of course, if the noise is allowed to grow domi-
nant the calculation fails (also not shown).

To assess convergence with expansion order, we plot
the magnetization P|↑〉 − P|↓〉as a function of time in
Fig. 3. The left panel shows parameters in the Kondo
regime εσ = −U/2, the right panel parameters in the
mixed valence regime εσ = −Γ/2. Results of the inch-
worm method are exact only at infinite expansion or-
der. If the maximum expansion order is artificially re-
stricted to 1, the relaxation to steady state is slow (right
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Figure 2. Top panel: AIM population dynamics in the Kondo
regime following a coupling quench from a fully magnetized
state at U = −2ε = 8Γ and inverse temperature βΓ = 50.
The bare hybridization expansion result (Fig. 1(a)) is shown
for times Γt < 1.5, along with the Inchworm result (Fig. 1(c))
up to Γt = 10 (the maximum order is limited to 3, at which
convergence occurs). Bottom panel: Error estimate of data
in upper panel showing exponential increase of the error as a
function of time due to the dynamical sign problem in the bare
method, and roughly constant error in the inchworm method.

panel) or even absent (left panel). As the maximum order
is gradually increased, the relaxation timescales shorten
and (for these parameters) converge at an expansion or-
der of ∼ 3− 4. In the limit ∆t→ 0 (we used a small but
non-zero ∆t = 0.05/Γ), the diagrams enumerated by the
inchworm algorithm correspond to the NCA diagrams for
order 1, the OCA diagrams for order 2, the two-crossing
diagrams for order 3, etc. Fig. 3 therefore shows that
at least a two-crossing approximation is required to cor-
rectly capture the real-time evolution of this system.

The error analysis (bottom panels of Fig. 3) reveals
that the error for each order first increases, then con-
verges to a constant, thereby overcoming the exponential
scaling commonly associated with a sign problem. The
error increases with order, since the sampling space grows
larger and the calculations are performed at fixed com-
putational cost. However, because the error rises by an
approximately constant factor between any two orders, it
may be eliminated by a small constant increase in com-
puter time (a factor of ∼ 3 in this case). This graceful
scaling, along with the rapid convergence to the exact
result, establishes the algorithm’s numerical exactness.

While the same results could be obtained by increas-
ing the order of a semianalytical skeleton expansion
(e.g. improving the level of approximation from non-
crossing to one-crossing to two-crossing etc.), the com-
putational expense typically increases very rapidly (the
cost of each added crossing in an n-crossing approxima-



4

0.00

0.25

0.50

0.75

1.00
P |
↑ 〉
−P
|↓ 〉

ε = −U/2 (Kondo) ε = −Γ/2 (Mixed Valence)
Order 1 (' NCA)
Order 2 (' OCA)
Order 3 (' 2CA)
Order 4 (' 3CA)
Order 5 (' 4CA)

0 1 2 3 4
Γt

10−5

10−4

10−3

∆
P |

0 〉

0 1 2 3 4 5
Γt

Figure 3. Top: population as a function of time after a cou-
pling quench at U = 8Γ and inverse temperature βΓ = 50,
computed for a system in the Kondo regime (left panels) and
in the mixed valence regime (right panels). Different traces
show the convergence as a function of Inchworm expansion
order. Bottom: error estimate of the populations for different
inchworm expansion orders as a function of time.

tion is ∼
(
t

∆t

)2). In practice, to our knowledge, non
equilibrium calculations even at the two-crossing level
have been performed only to relatively short time [41],
and higher order calculations have not been carried out.
Fig. 3 shows that the inchworm algorithm can access the
three- and four-crossing approximations.

Fig. 4 displays the time dependence of the probabil-
ity that the dot is empty or doubly occupied (reflect-
ing charge dynamics) and the magnetization, starting
from either an unmagnetized initial state (top panels)
or a fully magnetized initial state (bottom panels) and
computed in the presence of an oscillating magnetic field
(ε↑ − ε↓) (t) = 2h sin (ωt). Response to oscillating fields
has been studied in the context of currents induced by
oscillating voltages [42, 43]. Current relaxation is rather
fast even in the Kondo regime [32], so the numerical prob-
lems are less severe, but even in this case the equation
of motion methodology used in the more recent studies
can have convergence issues in the Kondo regime [16, 17].
Here, we focus on the more challenging issue of the spin
dynamics. Three regimes are compared: the noninter-
acting case (left panel), at the edge of the Kondo regime
(center panel), and deeper in the Kondo regime (right
panel). As U is increased and temperature decreased,
the charge relaxation time is shortened while the spin re-
laxation time lengthens dramatically. We quantify the
effects by fitting the data to the simple phenomenolog-
ical form f (t) = A + Be−γt + C sin (ω0t+ φ). Fits are
seen to be extremely good and reveal a more than factor
of 10 increase in the spin lifetime and 50% decrease in
the charge lifetime as the Kondo regime is entered, as
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Figure 4. AIM population and magnetization dynamics at
interaction strengths and temperatures shown, in the pres-
ence of a time dependent magnetic field h(t) = 2Γ sin (ωt)
with ω = 5Γ. Dot is initially in the empty state |0〉 (top
row) or in the fully magnetized state |↑〉 (bottom). Lighter
curves show time evolution for h = 0 with otherwise iden-
tical parameters. Dashed black curves show fits to f (t) =
A+Be−γt+C sin (ω0t+ φ). In units where Γ = 1, the charge
relaxation rates (γ for |0〉, |↑↓〉 ) are γc =2.83, 3.8 and 4.0 for
(U, β) = (0, 1), (5.0, 1) and (8.0, 50) respectively. The spin
relaxation rates in the presence of the field are γs =3.3, 0.81
and 0.25 (dot initially empty) and 2.4, 0.81 and 0.25 (dot ini-
tially fully magnetized). The spin relaxation rates for h = 0
are 0.68 for U = 5, β = 1; and 0.11 for U = 8, β = 50. The
final amplitudes C are 0.19, 0.13 and 0.1. φ = −2 in all cases.

well as an interesting dependence of the spin relaxation
time on the strength of the oscillating field. A more de-
tailed study of the spin dynamics and its dependence the
driving field will be presented elsewhere.

In conclusion, we have presented a QMC method for
real-time propagation which we have termed the Inch-
worm algorithm, as it is based on gradually ‘inching’
along the Keldysh contour. The algorithm takes ad-
vantage of previously computed propagation information
by reusing it when extending the propagation to longer
times. This technique could be applied to any quan-
tum many-body system, but its general usefulness still
requires investigation. We have implemented the algo-
rithm for the AIM in the hybridization expansion, where
we were able to access slow spin dynamics in the strongly
correlated Kondo regime and observe its response to an
oscillating magnetic field. Our method suppresses the
dynamical sign problem to such a degree that the poly-
nomially scaling part of the algorithm becomes dominant.
We also showed how high-order skeleton expansions are
accessible by truncating the expansion, at a scaling which
is quadratic at any order rather than being governed by
a power law with the power proportional to the order.
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