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A planar crack generically segments into an array of “daughter cracks” shaped as tilted facets when
loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to
the crack front (mode III). We investigate facet propagation and coarsening using in-situ microscopy
observations of fracture surfaces at different stages of quasi-static mixed-mode crack propagation
and phase-field simulations. The results demonstrate that the bifurcation from propagating planar
to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear
stability analysis with experimental observations. They further show that facet coarsening is a
self-similar process driven by a spatial period-doubling instability of facet arrays.

PACS numbers: 62.20.Mk, 46.50.+a, 46.15.x

Crack propagation is a main mode of materials failure.
Understanding and controlling this complex phenomenon
continues to pose both fundamental and practical chal-
lenges. While quasi-static planar crack growth with a
tensile stress normal to the fracture plane (mode I) is
well-understood, geometrically much more intricate crack
patterns can form in varied conditions [1]. A few exam-
ples include thermal or drying stresses that can cause
cracks to oscillate and branch [2, 3], or re-organize into
complex three-dimensional patterns [4–6], nonlinear elas-
tic effects that can induce crack front instabilities even
in mode I [7], or the superposition of mode I and a shear
stress parallel to the crack front (mode III). This mixed-
mode I+III fracture is observed in a wide range of en-
gineering and geological materials to produce arrays of
daughter cracks, which are shaped as tilted facets and
form by a geometrically complex crack front segmenta-
tion process [8–23].

Recent theoretical progress has been made to charac-
terize the crack-front instability leading to segmentation
[24, 25] and to describe the propagation of daughter-crack
arrays [26]. However, theory and experiments have not
produced a consistent picture. Griffith’s energetic cri-
terion [27] predicts that planar crack growth is possible
when the elastic energy release rate
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exceeds a critical material-dependent threshold Gc,
where KI and KIII are the mode I and mode III stress
intensity factors (SIF), respectively, which characterize
stress divergences near the crack front, µ is the shear
modulus and ν is Poisson’s ratio. Phase-field simula-
tions have revealed that planar growth is linearly unsta-
ble against helical deformations of the crack front [24] and
linear stability analysis in the framework of linear elastic
fracture mechanics (LEFM) [25] has predicted that this
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However, paradoxically, crack front segmentation is ex-
perimentally observed for KIII/KI values much smaller
than this threshold [8, 23], or even vanishingly small [22].
Also poorly understood is “facet coarsening”, the pro-
gressive increase of facet width and spacing with propa-
gation length from the parent crack.

In this letter, we investigate both facet propagation
and coarsening by mixed-mode I+III fracture experi-
ments that allow us to visualize in-situ complex crack
morphologies during quasi-static propagation, thereby
providing much more detailed geometrical information
on crack front evolution than conventional post-mortem
fractography. Moreover, we model those experi-
ments numerically with a phase-field approach.
Fracture in this model has been shown to be
governed by standard crack propagation laws as-
sumed in LEFM theory in the limit where the
microscopic process zone around the crack front
is much smaller than all other dimensions [28],
namely Griffith’s criterion and vanishing mode II
SIF [29]. Therefore, the present phase-field simu-
lations allow us to answer the non-trivial question
of whether subcritical crack propagation observed
experimentally for KIII/KI < (KIII/KI)c is de-
scribed by LEFM theory. This question could not
be answered by linear stability analysis, confined
to small amplitude in- and out-of-plane perturba-
tions of the crack front [25], or previous simula-
tions that focused on supercritical crack propaga-
tion [24]. The results show unambiguously that
subcritical crack propagation is quantitatively de-
scribed by LEFM theory and shed new light on
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FIG. 1: (Color online). In-situ microscope images (a)-(g)
of fatigue cracks in plexiglas at different stages of crack ad-
vance in mixed mode I+III loading depicted schematically in
(h) and corresponding example of crack-front segmentation
in phase-field simulation (i). KIII/KI ≈ 0.3 in (a)-(e) and
≈ 0.5 in (f)-(g); (a), (b) and (f) are experimental views from
a direction approximately perpendicular to the plane of the
parent crack with facets propagating downwards, while views
(c), (d), (e) and (g) are views with the crack propagation di-
rection out of the page. Views (c), (d) and (e) correspond
to different stages of crack advance increasing from (c) to (e).
Broken (pristine) regions of the samples appear in black (light
blue) or darker (lighter) grey depending on the viewing direc-
tion. The bar scale is 1 mm in all images. The red dashed
lines in (a) highlight the curved fronts of two facets as guide
to the eye; curved tips are clearly visible in (f). (i) Snapshots
of phase-field fracture surfaces (φ = 1/2 surfaces) at different
stages of crack advance increasing from top to bottom, show-
ing that energetically favored A facets [18] propagate ahead
of B facets eventually outgrowing them completely. Simula-
tion parameters are G/Gc = 1.5, KIII/KI = 0.5, and box
dimensions Dx = 307ξ, Dy = 100ξ and Dz = 200ξ.

the secondary instability of facet arrays underly-
ing the coarsening process.

Experiments are carried out using plexiglas beams and
a traditional three or four point bending setup [30]. To
introduce some amount of mode III, the initial planar
notch in the sample is tilted at an angle from the mode I
central plane of symmetry [19, 31]. A special procedure
is used to initiate a sharp crack with a straight front
[30]. The corresponding values of the SIF for each angle
and hence KIII/KI have been obtained by finite element
calculations, which show that KIII/KI varies between
approximately 0.1 and 0.5 when the notch angle varies
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FIG. 2: (Color online). Snapshots of phase-field simula-
tions illustrating the destabilization of planar crack growth
for KIII/KI = 0.4. The crack propagation length a in-
creases from (a) to (d) and both the crack front (blue lines)
and its in-plane and out-of-plane projections (red lines) are
shown. (e) Plot of linear instability threshold (KIII/KI)c ver-
sus Dy/Λ, where Λ represents the mean facet spacing.
Planar growth is unstable (stable) above (below) the filled
circles where error bars are defined in [30]. In all simulations,
G = 1.5Gc, Dx = 230ξ and Dz = Λ = 60ξ.

between 15◦ and 45◦, where zero angle corresponds to
pure mode I loading. Several beams were broken by fa-
tigue in the bending set-up [30]. The advantage of this
cyclic type of loading is that the crack advance (i) is
quasi-static, while leaving the crack path unchanged in
comparison to the one obtained under monotonical in-
creasing loading [32] and (ii) controlled by the number
of cycles so that complex crack morphologies can be ob-
served in-situ at different stages of crack growth. Obser-
vations were made using a Leica binocular or a Keyence
numerical microscope by transparency.

Examples of experimental images are shown in Fig.
1(a)-(g) for KIII/KI values of 0.3 and 0.5 correspond-
ing to initial notch angles of 30◦ and 45◦, respectively.
Those images reveal several important features. Firstly,
facets have a finger-shape with curved tips and flat sides
that is consistent with the shape predicted by phase-
field simulations (Fig. 1(i) and Movie 1 of [30]). Sec-
ondly, facets form for values of KIII/KI both below and
above the linear stability threshold predicted by Eq. (2),
(KIII/KI)c ≈ 0.39 for ν = 0.38 of plexiglas. Within op-
tical resolution, only energetically favored type A facets
are observed to emerge from the parent crack with a
well-defined tilt angle θ from the original fracture plane.
Thirdly, facets coarsen by elimination of other facets
leading to an increase of both facet width and facet spac-
ing along the array with increasing propagation length.
Coarsening is clearly visible from top views in Fig. 1(b)
and in the sequence Fig. 1(c)-(e), which moreover shows
that surviving facets maintain the same angle while over-
growing others. Additional views are given in [30].

Simulations were performed with a phase-field model
that regularizes stress-field divergences on a process zone
scale ∼ ξ around the crack front. All energy dissipation
takes place on a characteristic timescale τ [33]. Since
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we are primarily interested in modeling crack evolution
in a region away from the experimental sample bound-
aries where KIII/KI is approximately uniform [19, 34],
we carried out simulations in a rectangular slab geom-
etry of length Dx, width Dy and height Dz, defined in
Fig. 2(b), with the origin defined at the center of the
slab. We impose fixed displacements at y = ±Dy/2,
uy(x,±Dy/2, z) = ±∆y (mode I) and uz(x,±Dy/2, z) =
±∆z (mode III), periodic boundary conditions in z that
allow us to model a periodic array of daughter cracks
infinite in z [24]. We use a “treadmill” that adds a
strained (y, z) layer at x = Dx/2 and removes a layer at
x = −Dx/2 when the crack has advanced by one lattice
spacing. This allows us to simulate crack propagation
lengths much longer than Dx (a � Dx), thereby mod-
eling propagation in a slab infinitely long in x [30]. All
simulations are performed with ν = 0.38 of plexiglas. We
simulated both quasi-static propagation, where the elas-
tic field is relaxed at each time step of crack advance,
and dynamic propagation by solving the full elastody-
namic equations. Both sets of simulations yielded sim-
ilar results for the range G/Gc ≤ 1.5 where the ratio
of the crack propagation speed to the shear wave speed
v/c ≤ 0.3 is small enough to neglect inertial effects [30].

We first carried out simulations to check quantita-
tively the theoretical prediction of Eq. (2). For this
purpose, we slightly perturbed the planar parent crack
with a small amplitude helical perturbation of the form
δxfront + iδyfront = A0e

−ikz, where δxfront and δyfront

indicate the x and y components of deviations of the
front from the reference planar crack, respectively, and
k = 2π/Dz fits one wavelength Dz = Λ of the perturba-
tion in the periodic domain in z. The stability of planar
crack propagation is then determined by tracking the am-
plitude of the perturbation that grows or decays exponen-
tially in time [30] if propagation is unstable, as illustrated
in Fig. 2(a)-(d), or stable, respectively. Simulations
were carried out by increasing KIII/KI in small steps
to determine the threshold (KIII/KI)c, and repeating
this procedure for increasing values of Dy/Λ to quantify
finite size effects. Fig. 2(e) shows that (KIII/KI)c in-
creases monotonously with Dy/Λ and approaches a value
reasonably close to the prediction (KIII/KI)c ≈ 0.39
of Eq. (2) in the large system size (Dy/Λ � 1) limit.
We checked that instability thresholds reported
in Fig. 2(e) remain unchanged within error bars
if a random perturbation of the crack front was
used instead of a helical perturbation [30]. We
conclude that LEFM theory (Eq. (2)) and phase-field
modeling predict similar linear instability thresholds in
the large system size limit, even though facets are exper-
imentally observed well below this threshold.

Next, in order to explore the nonlinear character of
the bifurcation from planar to segmented crack front, we
measured experimentally the facet tilt angle θ extracted
from three-dimensional maps of post-mortem fracture

surfaces obtained using a profilometer as detailed in [34].
The angle θ is plotted versus KIII/KI in Fig. 3(a). Fur-
thermore, we investigated computationally the
propagation of periodic arrays of A facets in the
large system size limit relevant for experiment.
We chose Dy/Λ = 2 based on the results of Fig.
2(e) and an examination of strain fields showing
that finite size effects becomes negligible when
Dy/Λ ≥ 2 [30]. We also suppressed coarsening
by choosing Dz = Λ with periodic boundary con-
ditions along z. In this geometry, we tracked the
steady-state branch of propagating solutions by decreas-
ing KIII/KI starting from values above the linear in-
stability threshold to values below this threshold, as low
as 0.07 to span the entire experimental range of mode
mixity. For each KIII/KI value, we allowed the facet
to relax to a new stationary shape and tilt angle, as il-
lustrated in Fig. 3(b) for a simulation where KIII/KI

was decreased from 0.5 to 0.07. The computed tilt angles
are compared to experimental results in Fig. 3(a) with
the corresponding facet shapes shown in Fig. 3(c). Both
the facet shapes, which gently curve at their extremi-
ties in the yz plane due to elastic interactions between
neighboring facets, and the tilt angles are in good quanti-
tative agreement with experimental observations within
measurement errors. Fig. 3(a) also shows that computed
tilt angles are weakly dependent on system size (Dy/Λ)
and fall below the prediction of a simple theory, which
assumes that facets are shear-free [16, 24]. Those results
demonstrate that propagating segmented front solutions
exist over the entire range of KIII/KI investigated ex-
perimentally, including values less than (KIII/KI)c. We
conclude that the bifurcation from planar to segmented
front is strongly subcritical, with bistability of planar and
segmented crack growth for KIII/KI < (KIII/KI)c as
illustrated schematically in Fig. 3(d).

To characterize coarsening in phase-field simulations,
we investigated the stability of periodic array of facets
by repeating the above series of simulations with several
facets, corresponding to Dz = nΛ with n ≥ 2. This ge-
ometry is motivated by the striking similarity between
the coarsening behavior of facets in the present exper-
iments (Fig. 1(a)-(g)) and coarsening of curved fronts
in other interfacial pattern forming systems, in partic-
ular viscous fingering [35] and dendritic crystal growth
[36, 37]. In those systems, coarsening of finger arrays is
associated with a spatial period-doubling linear instabil-
ity of the array [36, 37]. While longer wavelength
perturbations of the array can also be unstable,
period-doubling leading to elimination of one of
every two fingers in the array is generically the
fastest growing mode. Results of simulations for
n = 2 in Fig. 4(a) show that arrays of facets ex-
hibit a similar period doubling instability driven
by elastic interactions between facets. We have
checked that period doubling is the fastest grow-
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FIG. 3: (Color online). (a) Comparison of facet tilt angles ob-
tained from experiments and simulations, where red and blue
arrows indicate the instability thresholds of planar crack prop-
agation for Dy/Λ = 1 and Dy/Λ = 2, respectively (see Fig.
2(e)), and theoretically predicted assuming shear-free facets
(dashed line) [16, 24]. (b) Snapshots of a phase-field simu-
lation for Dy/Λ = 1 demonstrating the subcritical nature of
the bifurcation from planar to segmented crack propagation.
A segmented front solution for KIII/KI = 0.5 (θ = 31◦) was
used as initial condition in a simulation for KIII/KI = 0.07,
causing the facet angle to relax to a lower steady-state value
(θ = 11.2◦) (see Movie 2 of [30]). (c) Out-of-plane and
in-plane (inset) crack-front projections. In all simulations,
Dx = 154ξ, Dy = Dz = 60ξ, Λ = 60ξ and G = 1.5Gc. (d)
Schematic diagram of subcritical bifurcation recapitulating
the experimental and simulations results with solid (dashed)
lines representing stable (unstable) solutions.

ing mode by also performing simulations with
n > 2 [30]. This instability yields an increase (decrease)
of the SIF and hence the energy release rate at the tips of
leading (lagging) facets. The amplification rate of insta-
bility is obtained by computing the difference of x-tip po-
sition ∆xtip(t) between leading and lagging facets, which
grows exponentially in time starting from an infinitesi-
mal perturbation, ∆xtip(t) ≈ ∆xtip(0)eωv0t/Λ, where v0

and Λ are the initial facet growth velocity and spacing,
respectively. The slopes of semi-log plots of ∆xtip(t)/Λ
versus v0t/Λ in Fig. 4(b) yield values of ω that increase
markedly with KIII/KI , showing that a larger mode III
component leads to a faster elimination rate of facets.

Coarsening, clearly visible in Fig. 1(b) and other ex-
perimental views [30], was quantified experimentally by
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FIG. 4: (Color online). (a) Illustration of spatial period dou-
bling instability in a phase-field simulation for KIII/KI =
0.5; out-of-plane and in-plane projections of crack fronts are
plotted in the top panel and the bottom panel, respectively
(see Movie 3 of [30]). (b) Semi-log plot of difference of tip
positions along the propagation x-axis between leading and
lagging facets versus scaled time for different KIII/KI . Inset:
coarsening rate β versus KIII/KI obtained from experiments
and phase-field simulations. In all simulations, Dx = 307ξ,
Dy = 60ξ, Dz = 120ξ, Λ = 60ξ and G = 1.5Gc.

analyzing post-mortem fracture surfaces [34]. The results
show that the relation between the mean facet spacing
Λ and the crack propagation length a is approximately
linear, with a mean slope β ≡ dΛ/da increasing with
KIII/KI (inset of Fig. 4(b)). To relate the coarsen-
ing rates in phase-field simulations and experiments, we
derive a simple evolution equation for the average ar-
ray spacing Λ based on dynamical mean-field picture as
previously done for dendritic arrays [36]. The coarsen-
ing rate β ≡ dΛ/da ≈ ∆Λ/∆a where ∆Λ is the change
of array spacing due to elimination of one of every two
facets along the array or ∆Λ ≈ Λ, while ∆a is the dis-
tance that the facets propagated during the elimination
process. Since elimination occurs via exponential ampli-
fication of small perturbations, facets will propagate an
average distance ∆a ∼ Λ/ω during this process, yielding
the prediction β ∼ ω, or β = Cω where C is a constant
prefactor of order unity. The comparison in the inset of
Fig. 4(b) shows that this simple theory is able to pre-
dict reasonably well the increase of the coarsening rate
with KIII/KI up to the value of the constant prefac-
tor C = 0.198 determined from a global best fit to the
experimental data for all KIII/KI values.

The reasonably good quantitative agreement between
simulated and observed morphologies suggests that
LEFM is an adequate theory to describe complex geo-
metrical features of both brittle and fatigue cracks in
mixed mode I+III fracture. Going beyond linear stabil-
ity analysis, the present results show that the subcritical
propagation of segmented cracks is theoretically possi-
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ble. Nevertheless, they do not identify the mechanism
and scale of subcritical facet formation. As suggested
by a recent LEFM analysis, materials imperfections may
contribute to this process [38]. However, this scenario,
and even more fundamentally the ability of LEFM to
model subcritical facet formation, remain to be explored
both computationally and experimentally.
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