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A Precision Test of AdS/CFT with Flavor

Andreas Karch,∗ Brandon Robinson,† and Christoph F. Uhlemann‡

Department of Physics, University of Washington, Seattle, WA 98195-1560, USA

We put AdS/CFT dualities involving probe branes to a precision test. On the holographic side we
use a new class of supersymmetric D7-brane embeddings into AdS5×S5, which allow us to describe
N = 4 SYM coupled to massive N = 2 supersymmetric flavors on S4. With these embeddings we
can compare holographic results to a field theory analysis of the free energy using supersymmetric
localization. Localization allows us to get results at strong coupling, and hence to compare in detail
to AdS/CFT. We find analytically matching results: a phase transition at the same critical mass in
both calculations and matching free energies up to a scheme-dependent constant in both phases.

I. INTRODUCTION

Probe branes have found a wide range of applications
in holographic studies, as the simplifications provided by
the probe approximation make them a very versatile tool.
They are used, e.g., to add quarks to holographic duals of
QCD-like theories [1, 2] and give one of the simplest holo-
graphic realizations of compressible and conducting mat-
ter [3]. Strictly speaking, the addition of probe branes
is an extra ingredient in holography. It does not directly
follow from the basic postulates, and one may be worried
about the probe limit being well defined. Conducting a
decisive test of these dualities is tough, however. The
virtue of the dualities, i.e. that involved questions on one
side are mapped to simple ones on the other, becomes an
obstacle when it comes to testing: it is difficult to calcu-
late the same quantity in the same regime on both sides of
the dualities. Building on recent progress in the study of
supersymmetric gauge theories on curved, compact man-
ifolds, and in particular supersymmetric localization [4],
we give a detailed test in this work.

In [4], a massive deformation of N = 4 Super Yang-
Mills (SYM) theory, called N = 2∗, was constructed on
S4. Preserving a subset of the supersymmetries allowed
for the use of supersymmetric localization. This pro-
cedure reduces the partition function from an infinite-
dimensional path integral to an ordinary integral over a
modified Gaussian matrix model. This dramatic simpli-
fication makes exact calculations possible and has led to
a large volume of work studying its application in the
context of AdS/CFT [5–7]. In particular, the authors
of [5] constructed, albeit numerically, the gravitational
dual to N = 2∗ on an S4, and were able to perform a rig-
orous test of AdS/CFT by matching derivatives of free
energies.

The methods of [4] can be applied to more general
N = 2 supersymmetric gauge theories on S4. Of partic-
ular interest are QCD-like theories with Nc colors and
Nf matter multiplets in the fundamental representation
of the gauge group. In the limit of large Nc, fundamen-
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tal matter offers a new small parameter, ζ ≡ Nf/Nc.
The matter fields experience non-trivial dynamics in the
background of the gauge field even in the ζ → 0 limit.
However, there are not enough matter degrees of freedom
to alter the dynamics of the color fields. That simplifi-
cation is captured holographically by the probe limit [8].
The fundamental flavor multiplets get incorporated via
a brane that minimizes its action in a fixed background
geometry. Its backreaction can be neglected. Building on
our recent construction of supersymmetric probe brane
embeddings dual to N = 4 SYM coupled to massive fun-
damental matter on curved spaces [9], we are now in a
position to perform a precise check of this duality using
localization, with both sides of the correspondence under
complete analytic control.

Field theory calculations based on localization with
fundamental matter revealed a complicated and some-
times poorly understood phase structure [10] at large
Nc, where the large Nc limit is what allows non-trivial
phase transitions even on a compact manifold [11]. In
the theory we are studying we have complete control over
the localization calculation and can identify a single well-
characterized phase transition as a function of mass.

To begin, we start with the holographic side. We dis-
cuss the brane embedding and evaluate the chiral and
scalar condensates as well as dF/dM , where M is the
mass of the flavors and F the free energy. Second, we
turn to the localization computation. We discuss the
quenched approximation of the matrix model and cal-
culate dF/dM , to compare to the holographic result.
Lastly, we end with a discussion.

II. HOLOGRAPHIC PROBE BRANE ANALYSIS

The essential ingredient to finding supersymmetric
brane embeddings is κ-symmetry, an extra fermionic
gauge symmetry used to project out part of the fermionic
modes and obtain matching numbers of bosonic and
fermionic degrees of freedom [12–15].
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A. Supersymmetric Embeddings

To describe the dual theory on S4, we start with an
S4–sliced AdS5×S5 background in Euclidean signature.
In Fefferman-Graham gauge the line element reads

ds2 =
dz2

z2
+

(1− z2

4 )2

z2
dΩ2

4 + dΩ2
5 , (1a)

dΩ2
5 = dθ2 + sin2 θdΩ2

3 + cos2 θdψ2 . (1b)

The D7-branes, described by the action

SD7 =− T7

∫
d8x
√

det
[
g + 2πα′F

]
+ 2(2πα′)2

∫
Σ8

C4 ∧ F ∧ F ,
(2)

are embedded into this background. In static gauge the
embedding is characterized by the slipping mode θ(z)
alone. The induced metric reads

ds2
D7 =

1 + z2θ′
2

z2
dz2 +

(1− z2

4 )2

z2
dΩ2

4 + sin2 θdΩ2
3 . (3)

The asymptotic D7-brane geometry is AdS5×S3, and the
profile of θ(z) determines whether and where the branes
cap off via the internal cycle collapsing. N = 2 super-
symmetric field theories on S4 with massive fields require
the addition of a dimension-2 scalar-bilinear compensat-
ing term in the Lagrangian, in order to restore the su-
persymmetry that is otherwise broken by the curvature
[4, 16]. To source these compensating terms holograph-
ically, we turn on a worldvolume gauge field on the D7,
A = f(z)ω. To reflect the properties of the field-theory
mass term, A has to transform in a specific way under
the SO(4) isometries of the S3 that the D7-branes wrap in
the internal space. In the language of [17], this translates
to ω transforming as (0, 1) under SU(2)× SU(2).

We now turn to the κ-symmetry analysis. The brane
embedding preserves those supersymmetries of the back-
ground which are generated by Killing spinors that sat-
isfy a projection condition, Γκε = ε. The matrix Γκ
encodes the brane embedding. To find supersymmet-
ric embeddings, we feed in the explicit AdS5×S5 Killing
spinors and demand that there be non-trivial solutions
to the projection condition. This yields a set of neces-
sary conditions for the embedding and gauge field. We
give the details in [9] and content ourselves with an out-
line of the main points here. Demanding the projection
condition spelled out explicitly in [9] to have non-trivial
solutions, such that N = 2 supersymmetry is preserved,
fixes ω to be precisely what we argued for and gives us a
non-linear relation between the gauge field and slipping
mode. In addition, we find a 2nd-order differential equa-
tion for the slipping mode alone. That equation can be

solved analytically:

cos θ(z) = 2 cos

(
4π + cos−1 τ(z)

3

)
, (4a)

τ(z) =
96z3(c−m log z

2 ) + 6mz(z4 − 16)

(z2 − 4)3
, (4b)

f(z) = −i sin3θ
z(z2 − 4)θ′ − (z2 + 4) cot θ

8z
. (4c)

The parameter m is identified, up to a factor of the ten-
sion of a fundamental string, with the mass of the flavor
fields, M = m

√
λ/2π [17]. The factor µ ≡

√
λ/(2π) will

be crucial in the field theory analysis: for any m which
is not infinitesimally small, the flavors in the field theory
are heavy, with mass of order

√
λ in units of the S4 radius.

The relation (4c) in particular links the near-boundary
expansions of f and θ, which should be expected given
that, on the field theory side, the coefficient of the com-
pensating term is fixed by the superpotential mass [4].

The D7 brane embeddings come in two distinct classes:
the branes can either smoothly cap off at a z∗ ∈ (0, 2), or
they can extend all the way to the center of AdS at z = 2.
The D7-brane geometry is a cone with S3 × S4 base,
where the S3 lives in the internal space and the S4 is the
radial slice in AdS. For the first type of embeddings, the
S3 shrinks at the tip of the cone, whereas for the second
it is the S4 that shrinks. These two types of embeddings
are connected by a critical embedding, where the brane
caps off at z∗ = 2 and the spheres collapse simultaneously
at the tip. The condition for the branes to cap off at a
z? ∈ (0, 2) is θ(z∗) ∈ {0, π}, which determines c as

c =
96mz3

∗ log z∗
2 − 6mz∗(z

4
∗ − 16)± (z2

∗ − 4)3

96z3
∗

. (5a)

The gauge field configuration at z = z∗ is singular unless
f(z∗) = 0, which fixes the cap off point in terms of the
mass as

z∗ = 2(m−
√
m2 − 1) . (5b)

Note that these capped embeddings only exist for m> 1.
For 0≤m< 1, we instead find embeddings that fill all of
AdS. A smooth embedding in that case requires θ′(z =
2) = 0, which translates to c = 0. These two topologi-
cally distinct families merge, as we will see, in a contin-
uous phase transition at m = 1. For a plot see Fig. 1(a).

B. One-Point Functions and Free Energy

The computation of CFT one-point functions follows
the standard AdS/CFT prescription, and we give the de-
tails in Sec. I of [18]. Varying the asymptotic values
of θ and f independently yields the chiral condensate
Oθ and the scalar condensate Of individually. From
the localization calculation, however, we only get ac-
cess to the linear combination that corresponds to vary-
ing within the family of supersymmetric embeddings.
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FIG. 1. The D7-brane embeddings are shown for m ∈ {0, 0.025, . . . , 2} in (a). For the dashed red curves the S4 collapses at
z= 2, while for the solid blue curves the branes cap off at a z? ∈ (0, 2) with the internal S3 collapsing. The critical embedding
with both collapsing concurrently is shown as thick purple curve. The upper and lower curves in (b) show dF/dM = V4〈Os〉
and d3F/dM3, respectively. The linear term in dF/dM is scheme dependent, and we subtracted off 2m log µ

2
for the plot. The

color/line coding reflects the embeddings from which the results are obtained holographically. The results match analytically to
the matrix model calculations in (19) for the red dashed curves and (18) for the blue solid curves. The purple dots correspond
to the critical embeddings/the hypermultiplets moving on to the eigenvalue distribution.

Namely, Os ≡ Oθ + iOf . Varying the D7-brane action
with respect to the field theory mass M = mµ yields

µ

T0
〈Os〉 = 3c+

2m3

3
(1 + 6α1)− m

2
(7 + 4β) , (6)

where T0 = T7VS3 and α1, β parametrize finite countert-
erms. That is, they are ambiguities in the renormaliza-
tion scheme. Demanding the scheme to preserve super-
symmetry on flat space/Poincaré AdS fixes α1 = − 5

12
[19]. To translate T0 in (6) to field theory quantities, we
use (see e.g. the table in [20])

T0V4/N
2
c = λζ/6π2 = 2µ2ζ/3 , (7)

where V4 denotes the volume of the unit S4. This results
in a free energy proportional to λ at strong coupling,
which has long been recognized as a puzzling feature of
the probe brane analysis, and the localization calculation
will have to reproduce that. Note that V4〈Os〉 = dF/dM ,
so (6) with (5), (7) can be readily compared to the field
theory side. For a plot see Fig. 1(b).

On the matrix model side, analyses of massive large-
Nc N = 2 gauge theories on S4 have seen infinite families
of phase transitions in the decompactification limit at
strong coupling, as more and more resonances are excited
on the eigenvalue distribution [10, 21]. In our holographic
setup we see exactly one, topology changing, transition
between the phases with AdS-filling branes for m< 1 and
branes capping off smoothly for m> 1. The (quantum)
critical point occurs exactly at m= 1, where the wrapped
S3 ⊂ S5 collapses concurrently with the S4 at the origin.
To determine the critical exponent we expand (6) around
the critical embedding. For m = 1 + ε with ε � 1, we

find

V4

ζµN2
c

〈Os〉 ' −
27 + 12β

9
− 13 + 4β

3
ε− 2ε2

+
16
√

2

15
ε5/2 +O(ε3) .

(8)

The striking feature of this expansion is that we have full
analytical control over extracting the critical exponents.
These are distinct from the study of non-SUSY flavors in
[22]. The difference can be traced back to the imaginary
gauge field which gives non-trivial cancellations in the
action that modify the general scaling analysis of [22].

III. LOCALIZATION WITH QUENCHED
FLAVORS

Before deriving dF/dM on the field theory side, we
review where the components in the matrix model orig-
inate. The localization calculation [4] begins by identi-
fying a Grassmann scalar symmetry, Q, that is nilpotent
up to gauge transformations. After adding a Q-exact
term δV = tQV to the Lagrangian, to which the parti-
tion function is insensitive, one can take the limit t→∞.
The saddle-point approximation becomes exact and the
partition function reduces to an integral over the saddle
points of δV . For N = 2 gauge theories on S4, the sad-
dles are parametrized by a single adjoint-valued scalar.
Computing the 1-loop fluctuations about that locus ex-
actly determines the partition function, up to instanton
corrections. The latter are exponentially suppressed at
large Nc [23], so we ignore them here. For N = 4 SYM,
the 1-loop determinants evaluate to unity, and one ends
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up with a simple unitary Gaussian matrix model

Z =

∫
daNc−1

∏
i<j

a2
[ij] e

S0 , S0 = −8π2

λ
Nc
∑
i

a2
i , (9)

where a[ij] = ai− aj labels the roots of su(Nc) with

weights ai. The Vandermonde determinant
∏
i<j a

2
[ij]

comes from gauge fixing into the Cartan subalgebra. It
provides a repulsive logarithmic interaction term for the
eigenvalues.

For N = 4 SYM coupled to massive N = 2 flavors, we
get an additional 1-loop factor and the matrix model be-
comes

Z =

∫
dNc−1a

∏
i<j a

2
[ij]∏

i

√
H
Nf

+ (ai)H
Nf

− (ai)
eS0 , (10)

where H(x±M) ≡ H±(x) , H(x) = G(1 + ix)G(1− ix)
and G(x) is the Barnes G-function [4]. We rearrange the
integrand of (9) as a single exponential eS , with

S = S0 −Nc
∑
i

ζ

2
log(H+H−) +

∑
i<j

log a2
[ij] . (11)

The quenched approximation amounts to evaluating the
partition function for 1�Nf�Nc. Note that the sums∑
i and

∑
i<j are O(Nc) and O(N2

c ), respectively. The
calculation of the free energy can be organized according
to an expansion in ζ by using F ≈ −S|saddles and

S

N2
c

= S̃0|ρ0 + ζ(S1|ρ0 + δS̃0|ρ0) +O(ζ2) , (12)

where N2
c S̃0 = S0 +

∑
i<j log a2

[ij], and S1 is the con-

tribution of the flavors. We have denoted the solution
to the Gaussian matrix model for pure N = 4 SYM in
the continuum limit as ρ0. This is the Wigner semicircle
distribution

ρ0(x) =
2

πµ2

√
µ2 − x2 , (13)

with maximal eigenvalue µ =
√
λ/2π. Note that, since

ρ0 extremizes S̃0, δS̃0|ρ0 = 0. Thus, our analysis only
requires the knowledge of S1|ρ0 .

Since we want to compare to AdS/CFT, we also work

at strong coupling, λ� 1. Note that M ∼
√
λ and the

typical eigenvalue contributing to the integral is of order
µ ∼
√
λ. So the arguments of H are large, validating the

use of the asymptotic expansion of the log derivatives

H ′(x±)/H(x±) = −x± log x2
± + 2x± +O(x−1

± ) , (14)

where x± = x±M . When |M |<µ, using the semicircle
distribution and large-argument expansion is only justi-
fied outside of a region of width 1/

√
λ around x = M ,

where the hypers are parametrically light. But the con-
tribution of that region is negligible at large λ. Conse-
quently, the flavor contribution is

F ′ =
ζN2

c

2

µ∫
−µ

dx ρ0(x)
[
4M − x+ log x2

+ + x− log x2
−
]
,

(15)

where F ′ = dF/dM . Integrating explicitly in the regime
where µ < M , we find

F ′ =
ζN2

c

3µ2

[
− 2M3 + 2

√
M2 − µ2(M2 + 2µ2)

+ 3Mµ2
(

1− 2 log
M +

√
M2 − µ2

2

)]
.

(16)

In the matrix model, phase transitions can occur when
some of the hypers become light, as demonstrated e.g. in
N = 2∗ in [21]. That is, for M ≤ µ there can be reso-
nances driving the hypers effectively massless. Zooming
in on the potential phase transition point, M = (1 + ε)µ
and expanding for ε� 1, we find

dF/dm

N2
c µ

2ζ
=

1

3
− log

µ2

4
− ε
(

1 + log
µ2

4

)
− 2ε2 +

16
√

2

15
ε5/2 +O(ε3) .

(17)

This expansion reproduces the non-analytic behavior and
matches exactly the coefficients of all the ε(2n+1)/2 terms
that were seen on the gravitational side in (8), which is
strong evidence that the topology changing phase transi-
tion is captured by the transition associated with bring-
ing hypers on to the eigenvalue distribution.

If we set the remaining scheme dependent counterterm
to β=− 5

2 + 3
2 log µ

2 , we can exactly match the holographic
result (6) with (5), (7) to (16) for µ<M :

V4

ζµN2
c

〈Os〉 = −2m3

3
+

2

3

√
m2 − 1(m2 + 2) (18)

+m

[
1 + 2 log

2(m−
√
m2 − 1)

µ

]
=

F ′

ζµN2
c

.

Performing the same calculation of F ′ for M <µ, where
the hyper mass is on the eigenvalue distribution [18],
again yields a perfect match to the holographic result:

V4〈Os〉 = mµζN2
c

(
1− 2

3
m2 − 2 log

µ

2

)
= F ′ . (19)

IV. DISCUSSION

We have studied the phase structure of N = 4 SYM
coupled to massive N = 2 flavor hypermultiplets on S4,
using holography and direct QFT computations inde-
pendently. The crucial ingredients to allow for localiza-
tion of the path integral on the field theory side are the
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preservation of some supersymmetry and the formulation
on a compact space. Holographically, this translates to
the supersymmetry of the D7-brane embeddings we de-
rived in [9]. We found one continuous phase transition
at the same value of the flavor mass in both calcula-
tions, and analytically matching dF/dM in both phases.
The remaining constant, which enters when this relation
is integrated to get the free energies, is scheme depen-
dent. So matching the free energies themselves then
merely amounts to choosing compatible renormalization
schemes.

Our results give strong support to the validity of
the probe brane constructions used so frequently in
AdS/CFT. The theories we studied are non-conformal,
and the quantities we compared are not special, in the
sense that they are not extrapolated from weak to strong
coupling using non-renormalization theorems. Moreover,
the theory described by the D3/D7 setup has a non-

trivial UV fixed point only in the quenched approxima-
tion, which frequently means that extra care is needed
when establishing the validity of holographic results. The
fact that we found such nicely matching results therefore
truly provides a non-trivial test of the dualities.

Possible directions for future research include tests for
other probe brane systems like D3/D5 [24], using local-
ization on S4 with defect hypers [25, 26], or the compu-
tation of superconformal indices.
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