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We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum,
that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum
teleportation by collecting Hawking radiation and performing measurements on the black hole.
Importantly, these methods only require the ability to perform measurements from outside the
event horizon.

INTRODUCTION

Recovering the complete quantum state of a black hole
from the Hawking radiation [1] into which it evaporates is
notoriously difficult [2]. In this letter we tackle a simpler
problem: recovering the quantum state of a single spin
qubit that has fallen into an evaporating black hole.

Our protocol uses information about the spin state of
the black hole before and after the qubit entered, as well
as the state of pairs of Hawking particles. The outline of
the procedure, sketched in Fig. 1, is as follows:

1. The initial spin state of the black hole is measured,
putting the density matrix of the black hole in the

form ρB = ρ
(int)
B ⊗ |j,m〉〈j,m|, where j,m are the

quantum numbers for total and projected angular

momentum, and ρ
(int)
B characterizes the internal de-

grees of freedom. Perfect fidelity can be achieved
only if m = 0; the experimenter can measure the
spin along different axes until this outcome is at-
tained.

2. The experimenter collects a single Hawking photon
that is part of a Bell pair, the other photon of which
falls into the hole.

3. The qubit, a photon in an arbitrary helicity state
|φ〉A = α |ε+〉A + β |ε−〉A, is dropped into the hole.

4. The black hole’s spin state is again measured, so

that the density matrix becomes ρ′B = ρ
′(int)
B ⊗

|j′,m′〉〈j′,m′|. Dephasing of the hole’s spin does
not occur if the interactions between the hole’s
spin and its internal state are rotationally-invariant
(conserve angular momentum).1
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1 Concretely, suppose that there was some conditional interaction
between the black hole’s internal degrees of freedom and its spin
which would take a state |BH〉 ⊗ (α |ε+〉 + β |ε−〉) to a state
α |BH+〉 ⊗ |ε+〉+ β |BH−〉 ⊗ |ε−〉, where 〈BH+|BH−〉 = 0. If,
for example, α = β = 1/

√
2, then angular momentum in the x

direction would not be conserved by the interaction.

5. The initial state of the qubit can then be recon-
structed from the state of the collected Hawking
photon.
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FIG. 1. Sketch of the qubit recovery protocol on a Penrose
diagram. The numbers correspond to the steps enumerated
above (details of the initial measurement 1. are not shown).
The dashed line represents the event horizon, the solid line
represents the stretched horizon [3], and the dotted line rep-
resents the experimenter’s trajectory.

This falls far short of a resolution to the information-loss
problem [4–7], but it does provide a concrete illustra-
tion of how information can escape from a black hole in
certain special circumstances, and is similar in spirit to
earlier discussions about using conserved quantities to re-
cover black hole information [8, 9]. Moreover, whether or
not the Page time [10] has elapsed does not affect infor-
mation recovery, since the protocol is not concerned with
reconstructing the state of the black hole. In this regard
the protocol is entirely distinct from the Hayden-Preskill
result [11].

A PROTOCOL FOR RETRIEVING INDIVIDUAL
QUBITS

Suppose that Alice sits outside a black hole and has in
her possession a photon in some state |φ〉A = α |ε+〉A +
β |ε−〉A that is unknown to her. Here, the basis states
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|ε+〉A and |ε−〉A represent the photon’s helicity, and thus
have angular momentum projection +1 and −1 respec-
tively. First, Alice measures the black hole’s angular mo-
mentum and finds it in the state |j,m〉B . (We suppress
the state of the black hole’s internal degrees of freedom,
which will play no role in our analysis.) Such a measure-
ment is technologically formidable, but one which Alice
could in principle perform with the help of a sufficiently
large Stern-Gerlach apparatus or by carefully measuring
frame dragging.

Before dropping her qubit into the black hole, Alice
collects a single Hawking photon. We assume that the
emitted photon is one half of a pair, the other one of
which falls into the hole. We also assume that Alice com-
pletes the protocol before any more Hawking particles are
emitted. The pairs of particles will have equal mass and
opposite gauge and Poincaré quantum numbers. Let us
focus on angular momentum.

The states of photons with definite angular momentum
are spherical waves that may be labelled by the quantum
numbers for linear momentum, k ∈ (0,∞); total (spin
plus orbital) angular momentum, η ∈ {1, 2, . . . }; pro-
jected angular momentum, µ ∈ {−η, ..., η}; and parity,
ω̄ ∈ {+1,−1} [12]. We assume that the photons are each
produced in the lowest angular momentum state (η = 1)
since this is the dominant mode of Hawking photon pro-
duction. Alternatively, Alice can measure her photon’s
total angular momentum and then discard her photon
and restart the protocol if it does not have η = 1. In or-
der to preserve CPT , the two photons are produced with

the same parity, since they are uncharged and since the
wavefunctions of different parity for each (kηµ) have the
same sign under T . The photons must also be created in
a zero total angular momentum state to conserve angu-
lar momentum. As such, after Alice measures the parity
of her photon, the angular momentum of the ingoing (i)
and outgoing (o) Hawking photons is

|0, 0〉io ≡
1√
3

(|1, 1〉i |1,−1〉o + |1,−1〉i |1, 1〉o

− |1, 0〉i |1, 0〉o) . (1)

(Further justification for this model is provided in the
next section.)

Next, Alice measures the squared projected angular
momentum of her photon. If she obtains the result
µ2 = 0, then she discards her photon and restarts the
protocol. Otherwise, the ingoing and outgoing photons
are projected into the Bell state |Φ〉io = (|1, 1〉i |1,−1〉o+

|1,−1〉i |1, 1〉0)/
√

2. Finally, Alice drops in her qubit, and
then measures the angular momentum of the hole again,
determining it to be |j′,m′〉B .

After Alice collects a suitable Hawking photon and
drops her qubit into the black hole, the total state of
the black hole and the three photons is therefore |Ψ〉 =
|j,m〉B ⊗ |φ〉A⊗ |Φ〉io. Alice is ignorant of what happens
inside the black hole. What Alice can know, however, is
the total angular momentum of the black hole and the
projection of its angular momentum vector along some
axis. As such, let us rewrite the AiB subsystem in the
total angular momentum basis:

|Ψ〉 =
1√
2

{
2∑

σ=−2

[
〈jm 2

2|
j+σ
m+2〉 |j + σ,m+ 2〉 ⊗ α |1,−1〉o + 〈jm 2

−2|
j+σ
m−2〉 |j + σ,m− 2〉 ⊗ β |1, 1〉o

]
+

1√
6

2∑
σ=−2

[
〈jm 2

0|j+σm 〉 |j + σ,m〉 ⊗ (α |1, 1〉o + β |1,−1〉o)
]

(2)

+
1√
2

1∑
δ=−1

[
〈jm 1

0|j+δm 〉 |j + δ,m〉⊥ ⊗ (α |1, 1〉 − β |1,−1〉)
]

+
1√
3
|j,m〉` ⊗ (α |1, 1〉+ β |1,−1〉)

}

The symbols 〈j1m1

j2
m2
|jm〉 ≡ 〈j1,m1; j2,m2|j,m〉 denote ap-

propriate Clebsch-Gordan coefficients. We have also sup-
pressed the label AiB on the total angular momentum
kets. Note that some of the 〈j1m1

j2
m2
|jm〉 could be zero. For

now, we will assume that −j + 2 < m < j − 2. In partic-
ular note the following states: |j,m〉, which comes from

j⊗2; |j,m〉⊥, which comes from j⊗1; and |j,m〉`, which
comes from j ⊗ 0. These states have the same angular
quantum numbers, but are orthogonal.

Next, Alice queries the black hole’s total angular mo-

mentum by performing the following orthogonal mea-
surement on AiB:

F̂1 =
∑
a

|a,m〉 〈a,m| ,

F̂2 =
∑
a

|a,m+ 2〉 〈a,m+ 2|+ |a,m− 2〉 〈a,m− 2| ,

F̂3 = ÎAiB − F̂1 − F̂2.
(3)

Note that by construction, only the results F̂1 and F̂2

may be obtained for black hole states which may emerge
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from this protocol. The protocol for retrieving the state
|φ〉 is then as follows:

Case 1: Alice obtains the result F̂1. In this case, the
whole system collapses to a state that is proportional to
the second and third lines of Eq. (2). Alice then measures
the total angular momentum Ĵ2 of the black hole.

If Alice measures the result J2 = (j±2)(j±2+1), then
she knows that the spin that she holds is in the desired
state |φ〉o = α |1, 1〉o + β |1,−1〉o.

If Alice measures the result J2 = (j ± 1)(j ± 1 + 1),
then the total system is in the state

|Ψ′〉 ∝ 1√
6
〈jm 2

0|j±1m 〉 |j ± 1,m〉 ⊗ |φ〉o

+
1√
2
〈jm 1

0|j±1m 〉 |j ± 1,m〉⊥ ⊗ |φ′〉o , (4)

while if she measures the result J2 = j(j + 1), then the
total system is in the state

|Ψ′〉 ∝
[

1√
6
〈jm 2

0|jm〉 |j,m〉+
1√
3
|j,m〉`

]
⊗ |φ〉o

+
1√
2
〈jm 1

0|jm〉 |j,m〉
⊥ ⊗ |φ′〉o , (5)

where |φ′〉o = α |1, 1〉o − β |1,−1〉o. Each of these states
represents a mixed density matrix for the spin that Al-
ice holds unless some of the Clebsh-Gordan coefficients
vanish. In particular, some algebra reveals that

〈jm 2
0|j+1
m 〉2 = 3m2(j+m+1)(j−m+1)

j(j+1)(j+2)(2j+1)

〈jm 2
0|j−1m 〉2 = 3m2(j+m)(j−m)

j(j+1)(j−1)(2j+1)

〈jm 1
0|jm〉

2
= m2

j(j+1) .

(6)

At the beginning of the protocol, Alice may measure j
and determine if it is an integer. If not, she may re-
peatedly throw spin-1/2 particles into the black hole and
measure j until she measures an integral value. She may
then repeatedly measure the black hole’s angular mo-
mentum projection along different axes until she obtains
m = 0, before collecting a Hawking photon and tossing
her qubit into the hole. In this way, the Clebsch-Gordan
coefficients (6) may be made to vanish, allowing Alice to
recover the qubit.

Case 2: Alice obtains the result F̂2. In this case, the
whole system collapses to a state that is proportional
to the first line of Eq. (2). Next, Alice measures the
total angular momentum Ĵ2, obtaining the result J2 =
(j + σ)(j + σ + 1) for some σ ∈ {−2, . . . , 2}. The total
state is then

|Ψ′′〉 ∝ α 〈jm 2
2|
j+σ
m+2〉 |j + σ,m+ 2〉 ⊗ |1,−1〉o

− β 〈jm 2
−2|

j+σ
m−2〉 |j + σ,m− 2〉 ⊗ |1, 1〉o . (7)

We are faced with the problem of disentangling the AiB
part of the system from the o part which Alice holds.
She may accomplish this task with the help of a spin-
2 ancilla and a local entangling unitary. Suppose Alice
holds a spin-2 ancilla, A′, that she prepares in the state
|2, 0〉A′ . If she then implements a local entangling unitary
operator UoA′ such that

UoA′ |1, 1〉o |2, 0〉A′ = |1, 1〉o |2, 2〉A′

UoA′ |1,−1〉o |2, 0〉A′ = |1,−1〉o |2,−2〉A′ , (8)

upon acting with UoA′ on the spins that she holds, the
total state IAiB⊗UoA′ (|Ψ′′〉 ⊗ |2, 0〉A′) is proportional to

α 〈jm 2
2|
j+σ
m+2〉 |j + σ,m+ 2〉AiB |1,−1〉o |2,−2〉A′

− β 〈jm 2
−2|

j+σ
m−2〉 |j + σ,m− 2〉AiB |1, 1〉o |2, 2〉A′ . (9)

Next, Alice tosses her ancilla into the black hole and
then measures the black hole’s total angular momentum.
The AiBA′ terms will consist of linear combinations of
|j + σ + 2,m〉, . . . , |j + σ − 2,m〉 weighted by the appro-
priate Clebsch-Gordan coefficients. If Alice finds AiBA′

in a total angular momentum j + σ + τ state, where
τ ∈ {−2, . . . , 2}, it is straightforward to show that the
spin that she still holds collapses to the state

|φ′′〉o ∝ α 〈jm 2
2|
j+σ
m+2〉 〈

j+σ
m+2

2
−2|j+σ+τm 〉 |1,−1〉o

− β 〈jm 2
−2|

j+σ
m−2〉 〈

j+σ
m−2

2
2|j+σ+τm 〉 |1, 1〉o . (10)

As long as Alice measured the black hole angular mo-
mentum at the beginning of the protocol and ensured
that |m| � j, then none of these coefficients vanish. Al-
ice then performs the appropriate unitary transformation
on the spin that she holds to restore the state |φ〉o.

DISCUSSION

We now consider several aspects of the proposed algo-
rithm, as well as its consequences for black hole informa-
tion theory.

State of the Hawking Photons: To see why the Hawk-
ing particles must be created in a zero total angular
momentum state, note that spacetime is locally flat on
the horizon and becomes increasingly flat as the black
hole mass M increases. As a result, the only way for a
Hawking pair to have non-zero angular momentum is for
the pair to pick it up via interactions with the vacuum,
i.e., with another Hawking pair. This requires, roughly
speaking, that two Hawking pairs be present within one
wavelength λ of one another in the time t it takes for a
pair to separate. The relevant scaling relations in gen-
eral are λ ∝ T−1, t ∝ λ, and F ∝ T d, where d is the
number of spatial dimensions, T is the Hawking tem-
perature, and F is the particle number flux across the
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horizon. The fraction f of Hawking pairs which interact
with an additional Hawking pair scales at tree order as
f ∝ |A|2(Fλd−1t)2 ∝ |A|2, where the mass-dependence
of the phase-space factors dropped out.2

For photons, which are the exponentially dominant
form of Hawking radiation at large M , the matrix el-
ement |A|2 must depend on the probability of produc-
ing a virtual electron-positron pair to mediate the Hawk-
ing pair interaction. This scales as e−me/Eγ ∼ e−meGM .
Thus for large black holes, we expect these interactions to
be exceedingly rare, and hence are justified in assuming
that the photon pair carries no net angular momentum.
We note that the creation of Hawking pairs in the zero
angular momentum state relies on the assumption that
the local spacetime around the horizon of the black hole
is a low-energy, quiescent environment. Were there in-
stead an energetic firewall at the horizon, we could not
expect outgoing quanta to come from such a state.

When performing this analysis for other quantum num-
bers the same arguments apply: for large black holes, the
Hawking pair must be created with zero net quantum
number. The algorithm we describe will work for any
conserved quantum number which photons may carry, so
long as the evolution of the relevant sector of the Hilbert
space is unitary. Notably, the algorithm does not re-
quire the hole’s evolution in the total Hilbert space to
be unitary over long timescales If the relevant number
is not quantized, the information recovered is only up
to a precision limit given by the number of bits recov-
ered. For those quantum numbers which photons do not
carry, superpositions of states cannot be recovered ex-
cept by waiting exponentially long in M for the relevant
particles to be emitted. If, on the other hand, it is known
that a quantum number eigenstate fell in, and hence that
only classical information was encoded in this way, then
direct measurement of the black hole allows for recovery.
For example, in order to learn the mass of a particle that
fell into the black hole, then one may of course measure
the mass of the black hole afterwards, assuming that the
initial mass of the black hole was known. Altogether, this
allows for unique recovery of classical information about
any particle that fell in. This is because each known
fundamental particle has a unique set of gauge quantum
numbers—mass, spin, charge, and color. This feature is
not necessary—it would not hold in a theory with two
unbroken U(1) symmetries—but it does hold true in the
Standard Model.

Resource Considerations: In its essence, our protocol

2 This is not entirely unexpected. Consider, for instance, that the
characteristic wavelength of Hawking photons is on the order of
the Schwarzschild radius. Roughly speaking, since t ∝ λ, any two
photons at the black hole horizon will therefore overlap before
they separate.

amounts to a quantum teleportation scheme [13] between
a transmitting party—the black hole—and a receiving
party—Alice. Its perfect fidelity when m = 0 is due to
the fact that setting m = 0 eliminates any degeneracy
in the states that the transmitting party could find after
measuring in the total angular momentum basis, as op-
posed to a (nondegenerate) maximally-entangled basis.
Alice would not be able to use an analogous procedure
to recover more that a single qubit at a time, since the
degeneracy of total angular momentum states rapidly in-
creases as more and more spins are added.

We can also understand the difficulty of the multiple
qubit case from the point of view of resources. Suppose
that Alice wishes to recover more than a single qubit at
a time through a quantum number conservation proto-
col. As these protocols amount to quantum teleportation
schemes, Alice is bound by the resource inequality [14]

2[c→ c] + [qq] ≥ [q → q], (11)

which says that two classical bits, or cbits, of commu-
nication and one entangled qubit pair shared between
the two parties is necessary to achieve one qubit of com-
munication. If Alice drops N photons into the black
hole and collects N Hawking photons, she only obtains
∼ log2(N2) = 2 log2N cbits since there are 4N+1 possi-
ble outcomes for the total angular momentum measure-
ment and ∼ 2N possible outcomes for the measurement
of the projection of the angular momentum along the
axis of quantization. As such, she cannot hope to recover
some general state of N qubits, which would require 2N
cbits. On the other hand, she may be able to recover
a state that is encoded in some subspace of H. For in-
stance, Alice could try encoding her data in the total an-
gular momentum of a set of N qubits with total angular
momentum s. Thus she is encoding her data in a Hilbert
space Hs with dimHs = 2s + 1. Resource considera-
tions do not prohibit the recovery of a state in Hs, which
only requires the extraction of log2 dimHs ≤ log2(N+1)
qubits and hence ∼ 2 log2N cbits. We suspect that the
general method for doing this is similar to the single qubit
case.

Timescale Considerations: During the protocol, Alice
must wait for the black hole to emit a quantum of Hawk-
ing radiation. Hawking emission rates have been calcu-
lated by Page [15]; for instance, photons are emitted in
their lowest angular momentum mode at a rate given
by t−1h = 1.463 × 10−4 c3/GM for Schwarzschild black
holes. Photon emission rates vary as a function of the
black hole spin and can be on the order of one hundred
times larger in the case of an extremal Kerr black hole
[16], so let us express the timescale of Hawking emissions
as th = f ·GM/c3. The factor f contains both geometric
and tunnelling factors, and is a function only of the spin
of the black hole.
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It is interesting to compare the emission time to the
scrambling time [11, 17–19], which may be thought of
as the time it takes for Alice’s infalling qubit to become
incorporated into the (stretched horizon of) the black
hole [3]. The scrambling time is

ts =
1

2πT
lnS, (12)

where S denotes the entropy of the black hole and where
we have used units in which ~, c, and kB are 1. This
increases faster than th as a function of the black hole
radius R, since S ∝ R2 and T ∝ 1/R, so there is a critical
radius Rcrit above which the scrambling time is greater
than the time required for a Hawking particle to be emit-
ted. In light of our single-qubit protocol, R > Rcrit means
that the qubit which falls in is essentially bounced off
of the black hole, rather than being incorporated into
it. The numerical factors involved, as well as the dif-
ference in scaling being in a logarithm, mean that the
critical radius for a Schwarzschild black hole is very large
(Rcrit ≈ e853lp, which is considerably larger than the cur-
rent Hubble radius). However, the dependence of T , S,
and the numerical factors on spin means that this radius
can be made arbitrarily small by tuning the angular mo-
mentum J of the hole, since an extremal Kerr black hole
has zero temperature but finite entropy.

CONCLUSION

We have described a protocol, based on quantum tele-
portation, that allows an external observer to recover a
single spin qubit that has been dropped into a black hole,
if the spin of the hole is measured before and after the
qubit is dropped. Our procedure relies on the fact that
the angular momentum states of the black hole span the
possible states of the qubit; for more than one qubit,
this condition would not hold, and an analogous proce-
dure would be unable to recover the information. On
the other hand, the fact that an external observer would
see apparent information loss due to angular momentum
state degeneracy is perhaps interesting in its own right.

This protocol retrieves a very specific kind of informa-
tion: a single qubit encoded in a conserved quantity such
as angular momentum; this is broad enough to include
the information contained in any one particle within the
Standard Model. Importantly, it is the full quantum
state of the qubit, not merely the classical angular mo-
mentum. While our protocol does not extend to informa-
tion encoded in the entanglement between multiple par-
ticles, the general idea of using quantum teleportation to
recover information deserves further study.
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