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We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-
assembly of a block copolymer using in situ X-ray scattering. Alignment of a lamellar mesophase
is observed on cooling across the disorder-order transition with the resulting orientational order
inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy,
∆χ, that drives alignment, and calculate its magnitude using coarse-grained molecular dynamics
to sample conformations of surface-tethered chains, finding ∆χ ≈ 2 × 10−8. From field-dependent
scattering data we estimate grains of ≈ 1.2 µm are present during alignment. These results demon-
strate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and
suggest a versatile strategy for field control of orientational order in block copolymers.

PACS numbers: 82.35.Jk,82.35.Lr,81.16.Dn

Block copolymers (BCPs) self-assemble to form peri-
odic structures on mesoscopic length scales. Such self-
assembly is driven by phase separation of chemically dis-
tinct segments, with the extent of demixing limited by
their physical connectivity. The characteristic length
scales therefore are largely defined by the size, or molec-
ular weight (MW), of the polymer chain. Considerable
efforts have been devoted to developing methods to reli-
ably direct BCP self-assembly, i.e. to align BCP domains,
in various device- or application-relevant geometries and
length scales [1, 2]. Electric fields have been used quite
effectively in this regard [3–5].

Under appropriate circumstances, magnetic fields can
also dictate the alignment of BCP mesophases in a highly
efficacious manner [6]. Orientational order develops due
to anisotropic field interactions that are sufficiently large
to overcome thermal forces. The alignment response is
a function of the anisotropy in magnetic susceptibility,
∆χ = χ‖ − χ⊥, where the parallel direction is along
the axis of highest rotational symmetry. The system
free energy density, εm, is a function of the angle ϕ be-
tween the field and this parallel direction, and of the field
strength, B, Eq. 1. For an ensemble of anisotropic ob-
jects, εm can be expressed in terms of the orientation
distribution coefficient 〈P2(cosϕ)〉 = 〈 12 (3 cos2 ϕ − 1)〉,
Eq. 2. The energy difference between orthogonal align-
ments is ∆εm = −∆χB2/2µ0. Strong alignment occurs

when this magnetostatic energy for structurally coherent
units, grains, is significant compared to thermal motion,
i.e., for |∆Em| = |∆εm|Vg � kBT , where Vg = ξ3 is
the volume of a grain with dimension ξ. Alignment can
therefore occur for suitably large grains, field strengths
or magnetic susceptibility anisotropies.

εm =
−B2

2µ0

(
χ‖ cos2 ϕ+ χ⊥ sin2 ϕ

)
(1)

εm =
−∆χB2

3µ0
〈P2(cosϕ)〉 (2)

Prior work has relied on liquid crystalline (LC) [7–
10] or crystalline [11] assembly of rigid moities inte-
grated with the BCP to achieve a sufficiently large ∆χ
for alignment at reasonable field strengths. Prototypi-
cal mesogenic units such as cyanobiphenyl species have
∆χ ≈ 10−6 (in SI dimensionless volume units) [12, 13].
∆χ is very small for typical BCPs in the absence of meso-
genic groups. Shape anisotropy notwithstanding, for a
lamellar diblock copolymer with volume fractions φA and
φB , the anisotropy, with respect to the lamellar normal, is
∆χ = −(χA−χB)2/[(χA/φA) + (χB/φB)] where χA and
χB are isotropic block susceptibilities. On this basis, for
a typical symmetric non-LC BCP such as poly(styrene-b-
4-vinylpyridine), ∆χ ∼ O(10−10) [14, 15]. This results in
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FIG. 1. (a) Chemical structure of PS-b-P4VP. (b) Tempera-
ture resolved SAXS data (25→ 265→ 25 ◦C) under 6 T field
applied vertically. 2-D diffractograms are shown inset at three
representative temperatures. Todt=257 ◦C, d-spacing=9.5
nm. (c) Schematic illustrating degenerate system alignment
with lamellar normals perpendicular to the field.

a significantly smaller driving force for alignment, and as
a result magnetic field alignment of such ‘coil-coil’ BCPs
has not been observed to date.

Here, we describe in situ X-ray scattering experiments
of a coil-coil BCP subjected to high magnetic fields.
Cooling across the disorder-order transition under the
field induces alignment of the lamellar normals perpen-
dicular to the field, suggesting the presence of ∆χ of a
non-trivial magnitude. The existence of such anisotropy
is rationalized in terms of the intrinsic anisotropy of in-
dividual Gaussian chains and the non-zero ensemble av-
erage of such anisotropies due to the organization of the
chain junctions along the lamellar interface between the
blocks. We use molecular dynamics (MD) to estimate
the intrinsic anisotropy of the system by simulating tra-
jectories of representative chains.

The system is poly(styrene-b-4-vinyl pyridine) (PS-b-
P4VP), Fig.1a, of MW 5.5 kg/mol (K) and PS weight
fraction, fPS=0.49, obtained from Polymer Source. Data
presented here are for this 5.5K material. A well-purified
secondary sample (MW=5.2K and fPS=0.50) was pre-
pared by living anionic polymerization for verification
purposes. SAXS was conducted as samples were cooled
(0.1 to 2 ◦C/min) across the order-disorder transition
(ODT), under fields from 0 to 6 T. Further details are
available in the Supplemental Material [16].

Temperature resolved SAXS data during heating and
subsequent cooling at 0.3 ◦C/min under a 6 T field is
shown in Fig. 1b. The primary peak at q∗=0.066 nm−1
corresponds to the lamellar period of 2π/q∗=9.5 nm and
Todt=257 ◦C. The ordering transition takes place over an
unusually broad temperature window spanning ≈8 ◦C,
though the reasons for this breadth are unknown (Sup-
plemental Material [16]). 2-D SAXS data at select tem-
peratures show the initial non-aligned state at room tem-
perature, the high temperature disordered state where
only correlation hole scattering is visible, and finally the
aligned state produced on cooling. To the best of our

ability to measure it, ± 0.5 ◦C, Todt is unaffected by the
field application. The data indicate that the lamellae
are aligned with their surface normals perpendicular to
the field, a degenerate configuration, indicating ∆χ < 0,
Fig. 1c. TEM views along and perpendicular to the field,
Fig. 2, confirm the alignment of the microstructure and
its degenerate nature.

FIG. 2. TEM images and associated fast Fourier transforms
(FFTs) of PS-b-P4VP aligned at 6 T visualized (a) perpen-
dicular to the field direction and, (b) along the field direction.

Fig. 3a. shows SAXS data during cooling across Todt.
The evolution of order and alignment are visible in the
gradual disappearance of the diffuse azimuthally uniform
intensity due to correlation hole scattering, and the con-
current emergence of Bragg scattering concentrated in
arcs centered on the equatorial line. The azimuthal de-
pendence of the scattered intensity in the Bragg peak,
I(ϕ), reflects the orientation distribution of the lamellar
normals in the plane of the diffractogram. The full width
at half maximum (FWHM) of I(ϕ) depends both on the
cooling rate and the field strength, with the best align-
ment observed for the combination of smallest cooling
rate, 0.1 ◦C/min, and largest field, 6 T, Fig. 3b-d.

The high degree of alignment suggests that the sys-
tem has ∆χ well in excess of the expected O(10−10)
value. Experiments conducted with the secondary sam-
ple recovered similar results, dispelling any concerns re-
garding sample purity. Lamellar BCPs are known to
form anisotropic, ellipsoidal, grains during nucleation
and growth, with faster growth along the lamellar nor-
mal due to interfacial tension [19, 20]. Magnetic shape
anisotropy for such grains is of a trivial magnitude as the
suspending fluid is a disordered melt of identical com-
position to the grain. Further, even if dominant, shape
anisotropy would align the ellipsoidal long axis parallel
to the field [17], whereas here the observed alignment is
orthogonal (Supplemental Material [16]).

The origin of the anisotropy can be understood partly
by recognizing that real Gaussian chains are anisotropic
entities as they possess finite end-end distances. Polar-
izability anisotropy has been treated in the context of
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FIG. 3. (a) 2-D SAXS data at selected temperatures show-
ing the emergence of aligned lamellae during cooling from the
isotropic, disordered state at 0.3 ◦C/min at 6 T. (b) Diffrac-
tograms for samples under 6 T at 245 ◦C after cooling across
Todt at different rates indicated. (c) Dependence of azimuthal
FWHM on field strength (at 0.3 ◦C/min) and cooling rate (at
4 and 6 T), on bottom and top x axes respectively. (d) Diffrac-
tograms at 245 ◦C after cooling across Todt at 0.3 ◦C/min at
indicated field strengths.

freely jointed statistical segments by Kuhn [21] yielding
∆γ = γ1 − γ2 = 3

5 (α1 − α2)R2/〈R2〉0 where α1 and α2

are the polarizabilities parallel and perpendicular to the
bonds joining statistical segments, R2 is the squared end-
end chain distance, and 〈R2〉0 is the unperturbed mean-
squared end-end distance. The problem has also been
treated in the context of the worm-like chain model by
Benoit, Weill, et al. [22, 23]. While individual chains are
anisotropic, the orientation of the end-end vectors in a
melt are uncorrelated so there is no net anisotropy. The
situation is different however for polymer brushes where
one chain end is tethered to an impenetrable surface.
This geometrically imposes a net anisotropy in which the
orientation distribution of end-end vectors has its maxi-
mum along the surface normal, and in which the width of
the distribution narrows with increasing areal density of
the chains. The physical analogy between surface attach-
ment of chain ends for a brush, and chain end (junction)
localization at a BCP block interface provides a segue
into treating chain anisotropy in BCPs. Indeed, the op-
tical anisotropy of tethered chains has been considered
in detail by Lodge and Fredrickson, for BCP melts [24].
They note the significance of intrinsic anisotropy rela-
tive to form anisotropy in the birefringence of lamellar
mesophases and highlight the importance of orientational
correlation of end-end vectors relative to chain stretching
in dictating the intrinsic anisotropy.

Optical anisotropies have been investigated experimen-
tally by depolarized Rayleigh scattering [25–27] and nu-
merically based on bond polarizability data using the ro-
tational isomeric states approaches advanced by Nagai

[28], and by Flory and co-workers [26]. The statistical
segment polarizability anisotropy ∆α = α1 − α2 cannot
be linked readily to chemical structure as it is a quantity
associated with a hypothetical construct, i.e. the statis-
tical segment of the freely jointed model. ∆α has been
measured however for some polymers using stress-optical
coefficients [21, 29]. These data are complemented by
studies of electric field induced birefringence, the Kerr
effect, in polymer solutions [30, 31]. The magnetic ana-
log in the Cotton-Mouton coefficient for magnetic bire-
fringence provides access to the chain magnetic suscep-
tibility anisotropy as Cm = (∆n/cB2) ∼ ∆χ∆γ, with
∆χ interpreted again in the context of the chain statis-
tical element [32, 33]. Precise measurements of magnetic
birefringence and segmental susceptibility anisotropy of
chains in the melt are challenging, and there is little re-
ported data that can be used in the present context.

In lieu of robust experimental data, we use MD to esti-
mate ∆χ for PS chains tethered at an impenetrable sur-
face. We investigate the orientational order of backbone
bonds and the side bonds to the phenyl ring as a func-
tion of degree of polymerization, Np, and the chain areal
density at the surface, σ, Fig. 4. The height of the brush
scales as H ∼ Npσ

1/2, as expected for melt chains [34].
The orientational order with respect to the surface nor-
mal, the y-axis in Fig. 4a, for backbone and side bonds to
the phenyl ring, 〈P b2 (cosϕ)〉 and 〈P s2 (cosϕ)〉 respectively,
increase slowly, but approximately linearly with σ. There
is no statistically significant MW dependence as expected
for brushes where chain anisotropy is independent of Np
[24]. 〈P b2 〉 and 〈P s2 〉 differ in sign, reflecting the tendency
of the backbone bonds, and therefore

−→
R , to lie parallel to

the surface normal, and the side bonds to be orthogonal
to the backbone.

The areal density of chains at the block interface is
σ = ρL0NA/MW where L0 is the lamellar period. Here,
σ ≈ 1 nm−2 which corresponds to σ = 0.033 in sim-
ulation units. The orientational order of the phenyl
ring defined by the ring normal, 〈P p2 (cosϕ)〉, is also cal-
culated (Supplemental Material [16]). At this density,
〈P b2 (cosϕ)〉 ≈ 0.07 and 〈P p2 (cosϕ)〉 ≈ 0.04. We es-
timate ∆χ based on the volume fraction, φ, weighted
anisotropies of the alkane backbone (∆χb) [35] and that
of the phenyl ring (∆χp) [15]. For the PS chains, ∆χ =
φb〈P b2 (cosϕ)〉∆χb + φp〈P p2 (cosϕ)〉∆χp ≈ −1.6 × 10−8.
We expect a similar contribution from the P4VP block
given the near identical susceptibilities of pyridine and
benzene, and so for the system overall ∆χ ≈ −1.6×10−8.
Note that σ in BCPs is not arbitrarily determined as it
is for brushes, but is a function of Np and the Flory in-
teraction parameter, χ (Supplemental Material [16]).

We use the estimated ∆χ to consider the alignment
data of Fig. 3. The azimuthal intensity dependence I(ϕ)
reflects the probability of observing lamellar normals at
a given angle ϕ with respect to the field direction. This
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FIG. 4. (a) Illustration of a polystyrene chain tethered at an
impenetrable surface. The phenyl rings can rotate around the
side-bond to the backbone. (b) Simulated backbone, 〈P b

2 〉,
and side chain, 〈P s

2 〉, orientation distribution coefficients as
functions of areal density σ for varying Np. (c) Simulated
brush height, H(σ), for varying Np.

probability p(ϕ,B), is governed by a Boltzmann factor
incorporating the angle-dependent magnetostatic energy,
Em(ϕ,B) = −(B2/2µ0)∆χξ3 cos2 ϕ, for a characteristic
grain size, ξ, Eq. 3. The orientation distribution coef-
ficient 〈P2〉 resulting from p(ϕ,B) may be evaluated by
integration, Eq. 4. The orientation distribution coeffi-
cients are obtained as a function of field strength from
Gaussian fits of the SAXS intensity profiles. We esti-
mate the representative grain size by fitting the experi-
mentally determined 〈P2〉 to those calculated using Eq.
4, yielding ξ ≈ 1.2 µm. This corresponds to a field
interaction ∆Em > 102 kT. The results are shown in
Fig. 5, with calculated field dependent P2 for different
grain sizes. It is important to note that the estimated
grain size only provides the characteristic dimensions of
a structural unit which would, at steady state, reproduce

FIG. 5. Field-dependent orientation distribution coefficients
(Eq. 4) for various grain sizes, ξ, for ∆χ = −1.6 × 10−8 at
245 ◦C. Black circles show experimentally derived values for
samples cooled 0.3 ◦C/min. Fitting Eq. 4 (red circle trace)
to experimental data yields ξ ≈ 1.2 µm.

the orientation distribution measured in the aligned sam-
ples - larger grains subjected to kinetic hindrances could
conceivably display the same orientation distribution as
smaller grains in steady state. It is clear from the cooling
rate dependence shown in Figure 3 that kinetic effects are
present. Such kinetic effects during the cooling ramp as
derived principally from the temperature-dependent vis-
cosity of the system, as well as any Ostwald ripening, do
not factor into our analysis. For comparison, assuming
no contribution from chain anisotropy (i.e. with only do-
main anisotropy of ∆χ = 1× 10−10), the observed align-
ment would imply the existence of uncharacteristically
large grains of ξ ≈6.6 µm at the elevated temperatures in
close proximity to Todt where alignment takes place. The
actual grain sizes observed at room temperature would
likely be significantly larger due to the aforementioned
kinetic and ripening effects. This supports our assertion
that domain anisotropy alone is insufficient to explain
the observed data. Finally we note in passing that the
greater uncertainty in determining P2 at low vs. high
field strengths (∼1-2 T) likely contributes to the weaker
agreement between the data and the fit at low fields.

p(ϕ,B) =
e−Em/kT sinϕdϕ∫ π
0
e−Em/kT sinϕdϕ

(3)

〈P2(cosϕ)〉 =

∫ π
0

1
2 (3 cos2 ϕ− 1) e−Em/kT sinϕdϕ∫ π

0
e−Em/kT sinϕdϕ

(4)

The grain size determined by fitting is in modest agree-
ment with an estimated size of ≈ 3 µm from sampling
TEM images of field aligned samples. To provide bet-
ter quantification we independently measured the grain
size using a recently developed ‘variance scattering’ tech-
nique [18]. This approach statistically analyses the az-
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imuthal intensity variation of a primary Bragg peak, from
which the number of independent scatterers, and thus
the grain size, can be quantified. On this basis we esti-
mate ξ ≈ 5 − 6µm at room temperature (Supplemental
Material [16]). The fact that TEM and scattering de-
rived grain sizes exceed the estimate based on the orien-
tation distribution reflects the occurrence of microstruc-
ture coarsening without accompanying improvement in
the alignment under the field. We should therefore view
the estimated ξ as an upper bound for the characteristic
grain size that pertained during the period in which the
system was responsive to the field.

BCP nucleation and growth kinetics have been ex-
plored experimentally and theoretically with some suc-
cess [19, 36–39]. The slow dynamics of high MW BCPs
has largely restricted work to unentangled melts and con-
centrated solutions as a matter of convenience where
grain sizes of ∼ 0.5 − 5 µm are not uncommon. One
can therefore expect that sufficiently large grains can be
prepared in a variety of BCPs to enable alignment using
magnetic fields. The slow dynamics of entangled melts
and the inaccessibility of the ODT in high MW systems
suggest that this strategy would be limited to melts below
entanglement MW and concentrated solutions. It is clear
that the aromatic nature of PS-b-P4VP contributes to a
markedly larger ∆χ than one would encounter for other
common but non-aromatic polymers such as polyethylene
oxide or polymethylmethacrylate. The fact however that
Em ∼ ξ3 means that for the purposes of alignment, an
order of magnitude decrease in ∆χ can be compensated
for by an increase in ξ by a factor of just over 2.
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