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We used low-energy, momentum-resolved inelastic electron scattering to study surface collective
modes of the three-dimensional topological insulators Bi2Se3 and Bi0.5Sb1.5Te3−xSex. Our goal
was to identify the “spin plasmon” predicted by Raghu and co-workers [S. Raghu, et al., Phys.
Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary collective mode is a surface
plasmon arising from the bulk, free carrers in these materials. This excitation dominates the spectral
weight in the bosonic function of the surface, χ′′(q, ω), at THz energy scales, and is the most likely
origin of a quasiparticle dispersion kink observed in previous photoemission experiments. Our study
suggests that the spin plasmon may mix with this other surface mode, calling for a more nuanced
understanding of optical experiments in which the spin plasmon is reported to play a role.

The defining characteristics of the three-dimensional
topological insulators are a bulk gap and the presence of
surface states that cannot be gapped by any time-reversal
symmetric type of disorder[1–5]. At its Γ point, the pro-
totypical Bi2Se3 system exhibits a single surface Dirac
cone characterized by locking between the quasiparticle
spin and momentum[6–11].

Several years ago, Raghu and co-workers predicted
that these surface states should give rise to a new type of
collective mode, which they termed a “spin plasmon”[12].
This mode is plasmon-like in the sense that it arises
from random-phase approximation (RPA) screening ef-
fects, but exhibits a spin current because of the spin-
textured character of the surface states. This mode is of
both fundamental and practical importance for several
reasons. First, its existence is a consequence of electron-
electron interactions, and hence is an essential many-
body effect in materials that are, traditionally, thought
of as independent-electron band insulators[1–5]. Second,
recent angle-resolved photoemission (ARPES) studies re-
ported the presence of dispersion kinks in the Dirac quasi-
particles in both Bi2Se3 and its superconducting cousin
CuxBi2Se3, indicating interaction with some bosonic col-
lective mode[13–17], for which the spin plasmon is a
prime candidate. The spin plasmon also has potential
application bridging the areas of surface plasmonics and
spintronics, by providing a coupling between surface col-
lective modes and spin degrees of freedom[18–20].

The primary experimental evidence for this mode
comes from pioneering infrared transmission measure-
ments of Bi2Se3 nanoribbons, which were fabricated by
e-beam lithography and reactive ion etching[19, 21, 22].
An excitation was observed in the THz regime, whose
dispersion exhibited the

√
q dependence expected of the

spin plasmon[12]. It is crucially important, however, to
detect this excitation on a pristine, unpatterned surface,
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both to corroborate the THz experiment and to under-
stand the dynamics of this excitation in a native material.

Here, we present measurements of the surface collec-
tive modes of Bi2Se3 and Bi0.5Sb1.5Te3−xSex (BSTS) us-
ing low-energy, momentum-resolved electron energy-loss
spectroscopy (M-EELS). M-EELS is an inelastic scatter-
ing technique that measures the dynamic structure factor
of a surface, S(q, ω)[23], which is the Fourier transform of
the surface density-density correlation function. S(q, ω)
is proportional to the bosonic spectral function, χ′′(q, ω),
via the fluctuation-dissipation theorem[23]. χ′′(q, ω) di-
rectly reveals the charged collective modes of a surface in
the meV range, and this makes M-EELS an ideal tech-
nique to detect the presence of the spin plasmon in an
unpatterned surface.

To conduct the experiment, single crystals of Bi2Se3
were grown from a melt by techniques described
previously[24]. The Se vapor pressures were varied to ad-
just the concentration of vacancies, which determine the
degree of electron doping[24]. The crystals were charac-
terized using DC Hall measurements, and labeled 1A-7A
in ascending order of bulk carrier density, which ranged
from ne = 1.3×1018 cm−3 to ne = 2×1019 cm−3. Single
crystals with nominal composition Bi0.5Sb1.5Te3−xSex
(BSTS) were grown from high-purity (99.9999%) ele-
ments of Bi, Sb, Te and Se using the floating-zone
method. These crystals are labeled 1B-7B in ascending
order of x, which was varied over the range 1.5 ≤ x ≤ 2.2.

The crystals were characterized with ARPES to es-
tablish the location of the Fermi energy relative to the
bulk bands and Dirac surface states. The Fermi energy
of some Bi2Se3 crystals in batches 1A-3A was found to
reside in the bulk gap, but all crystals from batches 4A-
7A were found to have the Fermi energy in the con-
duction band (Fig. 1(a)-(c)). We note that, while the
bulk carrier density as measured by Hall effect was uni-
form within a growth batch, the Fermi energy measured
with ARPES was highly variable, particularly for crystals
with lower vacancy concentration. This variation was ob-
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FIG. 1. (color online) (a)-(c) ARPES spectra taken at 55K
from Bi2Se3 crystals from batches 6A, 1A and 3A, respec-
tively. (d)-(f) APRES spectra taken at 20K of BSTS from
batches 7B, 5B and 2B, respectively. The blue dashed lines
indicate the dispersions of the surface Dirac bands while the
red dashed lines indicate the bulk bands.

served previously and attributed to band bending due to
differences in surface termination upon cleaving[24]. The
Fermi energy in all BSTS crystals was found to reside
near the Dirac point, with crystals from batches 3B-7B
being slightly p-type and those from batches 1B and 2B
slightly n-type (Fig. 1(d)-(f)). Note that the valence
band in BSTS rises very close to the Dirac point, suggest-
ing bulk carriers may be present even for nearly neutral
materials.

For M-EELS measurements, crystals were cleaved at
room temperature in ultrahigh vacuum (UHV) and mea-
sured within 30 minutes, unless stated otherwise[25, 26].
The spectrometer used was of the Ibach variety equipped
with a double-pass monochromator and an energy an-
alyzer to disperse the scattered electrons onto the de-
tector [27]. To acheive momentum resolution, the spec-
trometer was equipped with a motorized scattering angle
and mated to a custom low-temperature sample goniome-
ter actuated with a piezoelectric motor and differentially
pumped rotary feedthrough. Using several sets of trans-
lations, the various rotation axes were aligned to intersect
the electron beam at a single point. A control system
similar to that used in triple axis neutron scattering was
employed to allow true reciprocal space scanning. The
typical energy resolution was ∼10 meV while the mo-
mentum resolution was 0.03 Å−1. The incident beam
energy was 50 eV for all measurements.

M-EELS measurements, taken at room temperature
for Bi2Se3 and T = 100K for BSTS, are shown in Fig. 2.
The primary feature in both materials is a high-intensity
inelastic peak whose energy in the Bi2Se3 system varies
from 23 ∼ 90 meV, depending upon the bulk carrier den-
sity (the peak centered at zero energy is elastic scatter-
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FIG. 2. (color online) (a) Room temperature M-EELS spec-
tra from Bi2Se3, taken at q=0, showing the dependence of
the plasmon peak on the bulk carrier density. (b) M-EELS
spectra from BSTS at q=0 taken at T = 100K, showing in-
sensitivity of the plasmon peak to the location of the Fermi
energy with respect to the Dirac point (spectra are displaced
vertically for clarity).
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FIG. 3. (color online). Momentum-dependent M-EELS spec-
tra from a Bi2Se3 crystal from Batch 3A, showing a lack of
dispersion, which is expected of a surface plasmon from a bulk
conductor.

ing from the crystal surface). In addition, at high doping
levels a weak, secondary excitation—with much smaller
spectral weight—is observed in Bi2Se3 (Fig. 4(b)). This
mode may be identified as the out-of-plane A1g phonon
previously observed in Raman scattering studies [28, 29].

While it is tempting to identify the primary excitation
as the spin plasmon, its dispersion suggests a different
origin. Fig. 3 shows M-EELS spectra for different val-
ues of the in-plane momentum transfer, q, taken from a
Bi2Se3 crystal from batch 3A (other crystals, including
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BSTS, yielded similar results). Rather than exhibiting
the
√
q dependence expected for a spin plasmon, the peak

was found to reside at fixed energy, independent of q.

While the peak energy is independent of momentum,
it changes in a systematic way with bulk carrier den-
sity. Fig. 4(a) shows the square of the peak energy plot-
ted against the carrier density, ne, determined from Hall
measurements. This plot shows a linear relationship to a
high degree of accuracy, indicating that the excitation en-
ergy scales like

√
ne. The reproducibility of this relation-

ship is surprisingly good considering the unpredictable
location of the Fermi energy measured with ARPES[24],
and suggests that the excitation is a feature of the bulk
carriers rather than the surface states.

The above behavior is typical of the surface plasmon
of a bulk, 3D conductor. In the standard electromag-
netic theory[30, 31], a surface plasmon disperses from
zero energy with a phase velocity close to c and, above a
momentum, qs, saturates to an energy (in SI units)

ωsp =

(
ε∞

ε∞ + 1

)1/2

ωp. (1)

where ωp =
√
nee2/ε0ε∞m∗ is the bulk plasma frequency

(m∗ being the effective mass), and ε∞ is a background
dielectric constant representing screening by high-energy
interband transitions not measured in the experiment.
The saturation momentum qs ∼ ωp/~c (∼ 8 × 10−6Å−1

for the excitations observed here) is far below the momen-
tum resolution of EELS spectrometers, which therefore
observe surface plasmons as nondispersive excitations, as
we do here. A least-squares fit of Eq. 1 to the data in Fig.
4(a) gives a value ε∞=26±2, which is consistent with pre-
vious studies, which usually quote values between 25-29
[28, 32, 33]. We conclude that this excitation is not the
spin plasmon, but a conventional surface plasmon arising
from the bulk, conduction electrons in the material.

Nevertheless, this observation is highly significant.
While the spin plasmon should in principle be present,
this observation demonstrates that the largest contribu-
tion to χ′′(q, ω) is a surface plasmon of the bulk car-
riers. The existence of bulk carriers is, of course, well
known[24]. What we have shown is that these carriers
can exhibit their own surface collective mode, distinct
from any physics related to the Dirac surface states.

This surface plasmon is the most likely origin of the
quasiparticle dispersion kinks observed in Bi2Se3 with
ARPES[13–17]. The coupling strength between a quasi-
particle and a bosonic mode is, in the first approximation,
determined by the magnitude of the boson propagator,
χ(q, ω). For a simple electron gas, for example, the quasi-
particle self-energy is given by[34]

Σ(k, ω) = −
∫
k<kF

dk′

(2π)2
V (q)(1 + V (q)χ′(q, ω)), (2)
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FIG. 4. (color online) (a) Square of the surface plasmon
energy plotted against the carrier density determined from
Hall measurements. (b)Observation of a low energy collec-
tive mode, which is the surface analog of the out-of-plane A1g

phonon.

where q = |k − k′|, V (q) is the Coulomb interaction
and χ′(q, ω) is the real part of the boson propagator,
which may be obtained from the bosonic spectral func-
tion, χ′′(q, ω), by Kramers-Kronig transform. Hence,
those features with the largest spectral weight in M-
EELS data are likely to have the largest influence on the
quasiparticle self-energy. The dominant feature in our
measurements is the surface plasmon from the bulk car-
riers, whose energy is close to that of the 20 meV ARPES
kink. We conclude that it is this surface plasmon, and
not the spin plasmon or A1g phonon, that is the origin
of this dispersion anomaly.

This conclusion may extend to superconducting
CuxBi2Se3, which exhibits a dispersion kink at
∼90 meV[14, 16]. The Fermi energy from Ref. [14] of
250 meV implies a bulk carrier density in CuxBi2Se3 of
2.7±0.8×1019 cm−3, which (via Eq. 1) implies a surface
plasma frequency of 102±10 meV. This energy is close to
that of the observed kink, suggesting that a surface plas-
mon from bulk carriers is likely the origin of the kinks in
superconducting materials as well.

We close by discussing the implications of our study
for optical experiments on Bi2Se3 and related materi-
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als. The thickness of the films in the THz study on
nanoribbons[21], for example, were either 60 nm or 120
nm, and hence would act as 2D layers as far as their
THz optical properties are concerned, since λ � d. The
presence of bulk carriers in these films should therefore
give rise to a 2D plasmon that is distinct from the spin
plasmon, but also exhibits

√
q dispersion. A typical

bulk carrier density of ne = 1018 cm−3, for example,
would imply an areal density nA = 1.2 × 1013 cm−2 for
a 120 nm thick film, giving a 2D plasma frequency of
ν =

√
qe2nA/8πε0εm∗ = 3.5 THz at a momentum of

q = 1.6 × 104 cm−1. This value is close to what is ob-
served in Ref. [21], indicating that this experiment could,
just as well, have been interpreted as observing a plasmon
of the bulk carriers. Of course, both the surface plasmon
and the spin plasmon should exist, in which case the two
would mix in a nontrivial way. Further studies using both
M-EELS and THz probes are needed to resolve this issue.

In summary, we studied the collective modes on the
surface of two topological insulators and found that the
primary feature is a surface plasmon arising from the
free carriers in the bulk. The A1g phonon is also ob-
served as a secondary excitation with much smaller spec-
tral weight. Because of its large spectral weight contribu-
tion to χ′′(q, ω), this surface plasmon is most likely the
origin of the quasiparticle dispersion kinks at 20 meV
and 90 meV observed with ARPES in Bi2Se3 and in
CuxBi2Se3, respectively. This excitation should also
exhibit the properties of a 2D plasmon in thin layers,
in which it should mix with the spin plasmon, call-
ing for a more nuanced interpretation of recent THz
experiments[19, 21, 22, 35, 36].
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