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The stationary functional of the density functional plus embedded dynamical mean field theory
(DFT+DMFT) formalism to perform free energy calculations and structural relaxations is imple-
mented for the first time. Here, the first order error in the density leads to a much smaller, second
order error in the free energy. The method is applied to several well known correlated materials;
metallic SrVO3, Mott insulating FeO, and elemental Cerium, to show that it predicts the lattice
constants with good accuracy. In Cerium, we show that our method predicts the iso-structural
transition between the α and γ phases, and resolve the long standing controversy in the driving
mechanism of this transition.

PACS numbers: 71.27.+a,71.30.+h

Prediction of the crystal structures of solids by large
scale quantum mechanical simulations is one of the fun-
damental problems of condensed matter physics, and oc-
cupies a central place in materials design. The workhorse
of the field is the Density Functional Theory (DFT) [1] at
the level of Local Density Approximation (LDA) or Gen-
eralized Gradient Approximations (GGAs), which pre-
dict lattice constants of weakly correlated materials typ-
ically within ∼1% relative error [2].

These errors of DFT in LDA/GGA implementations
are an order of magnitude larger in the so called cor-
related materials: For example, the lattice constant of
δ-Pu is underestimated by 11% [3] or non-magnetic FeO
by 7%[4]. While GGAs and hybrid functionals can some-
times improve upon conventional LDA, these function-
als many times degrade the agreement between predicted
and experimentally determined bulk moduli and lattice
constants, in particular in materials containing heavy el-
ements. [2]

To account for the correlation effects, more sophisti-
cated many body methods have been developed. Among
them, one of the most successful algorithms is the dy-
namical mean-field theory (DMFT) [5]. It replaces the
problem of describing correlation effects in a periodic
lattice by a strongly interacting impurity coupled to a
self-consistent bath [6]. To become material specific,
DMFT was soon developed into an electronic structure
tool (LDA+DMFT) [7, 8], which achieved great success
in numerous correlated materials (for a review see [9]).
The LDA+DMFT method has mainly been used for the
calculation of spectroscopic quantities, and only a few
dozens [10–30] of studies managed to compute energetics
of correlated solids, and only a handful of them used ex-
act solvers and charge self-consistency [18, 19, 24, 25, 28,
29]. This is not only because of the very high computa-
tional cost, but also because previous implementations of
LDA+DMFT were not stationary, and hence it was hard
to achieve precision of free energies needed for structure
optimization and study of phase transitions in solids.

Here we implemented the LDA+DMFT functional in

the real space embedded DMFT approach [31], which
delivers stationary free energies at finite temperatures.
This stationarity is crucial for practical implementation
and precision of computed energies, since the first order
error in the density ρ (or the Green’s function) leads only
to the much smaller second order error in the free energy,
since the first order variation vanishes, i.e., δF/δρ = 0.
This property is also crucial in calculating the forces, as
stationarity of the functional ensures that only Hellmann-
Feynman forces need to be computed for structural re-
laxation . [59]
The DFT+DMFT total energy is given by [9] :

E = Tr(H0G) +
1

2
Tr(ΣG) + EH [ρ] + Exc[ρ]

−ΦDC [nloc] + Enuc−nuc (1)

where H0 = −∇2 + δ(r − r
′)Vext(r), G is the elec-

tron Green’s function, EH [ρ] and Exc[ρ] are Hartree
and DFT exchange-correlation functional, Vext is the
electron-nuclear potential, Enuc−nuc is the interaction en-
ergy of nuclei, Σ is the DMFT self-energy, and ΦDC [nloc]
is the double-counting (DC) functional. [4] Here the
Migdal-Galitskii formula (MGF) is used Epot =

1

2
Tr(ΣG)

to compute the DMFT part of the potential energy.
Gordon Baym showed [32] that for certain class of ap-

proximations, which are derivable from a functional ex-
pressed in terms of closed-loop Feynman diagrams, MGF
can be used instead of more complicated expression for
evaluating the Luttinger-Ward Functional [33, 34]. He
called such approximations conserving. While the DMFT
is a conserving approximation in Baym’s sense, LDA or
GGA are not, as the Galitskii-Migdal formula 1

2
Tr(Vxcρ)

has to be replaced by the exchange-correlation functional
Exc[ρ]. As a result, the combination of DFT+DMFT in
its charge-self consistent version is not conserving either,
and consequently MGF can give different total energy
than the Luttinger-Ward functional. Only the evaluation
of the latter is guaranteed to give stationary free ener-
gies. We will give numerical evidence that evaluation of
MGF in Eq. 1 gives different results than evaluation of
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the Luttinger-Ward functional, which strongly suggests
that Eq. 1 gives non-stationary total energies.
The Luttinger-Ward functional of DFT+DMFT has

been well known for several years [9], but it has never
been successfully implemented to compute the free en-
ergy of a solids. It has the following form

Γ[G] = Tr logG− Tr((G−1

0
−G−1)G) + EH [ρ]

+Exc[ρ] + ΦDMFT [P̂G]− ΦDC [P̂ ρ] + Enuc−nuc, (2)

where G−1

0
(rr′; iω) = [iω + µ + ∇2 − Vext(r)]δ(r −

r
′), ΦDMFT [P̂G] is the DMFT functional, which is
the sum of all local skeleton Feynman diagrams.
The projected Green’s function P̂G ≡ Glocal =∑

LL′ |φL〉 〈φL|G|φL′〉 〈φL′ | and the projected density

P̂ ρ ≡ ρlocal are computed with projection to a set of lo-
calized functions |φ〉 centered on the ”correlated” atom.
The projection defines the local Green’s function Glocal,
the essential variable of the DMFT.
The variation of functional Γ[G] with respect to G

(δΓ[G]/δG) gives,

G−1 −G−1

0
+ (VH + Vxc)δ(r − r

′)δ(τ − τ ′)

+P̂
δΦDMFT [Glocal]

δGlocal

−P̂
δΦDC [ρlocal]

δρlocal
δ(r− r

′)δ(τ − τ ′) = 0, (3)

which vanishes, since it is equal to the Dyson equation
that determines self-consistent G, hence the functional is
stationary.
The value of the functional Γ at the self-consistently

determined G delivers the free energy of the system [32].
We evaluate it by inserting G−1

0
− G−1 from Eq. 3 into

Eq. 2 to obtain

F = Enuc−nuc − Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ]

+Tr logG− Tr logGloc + Fimp

+Tr(Vdcρloc)− ΦDC [ρloc] + µN, (4)

where we denoted Vdc ≡ δΦDC [ρlocal]/δρlocal and Fimp

is the free energy of the impurity problem, i.e., Fimp =
Tr logGloc −Tr(ΣGloc) + ΦDMFT [Gloc]. [4] Here we also
use the fact the solution of the auxiliary impurity prob-
lem delivers the exact local Green’s function, i.e., Σ =
δΦDMFT [Glocal]/δGlocal, and we added µN because we
work at constant electron number.
The crucial point is that the continuous time quantum

Monte Carlo method (CTQMC) [35, 36] solves the quan-
tum impurity model (QIM) numerically exactly, hence,
we can compute very precisely the impurity internal en-
ergy as well as the free energy Fimp of this model. As
the impurity configurations are visited with probability
proportional to their contribution to the partition func-
tion (Pk = Zk/Z), and since probability for k-th order
term Pk is easily sampled by CTQMC, we can compute

the value of the partition function Z if we know par-
tition function at any order of the perturbation theory
k. The zeroth order corresponds to the atomic state,
hence Z0 = Zatom, which can be directly computed from
the knowledge of the atomic energies. Hence as long as
the probability for zeroth perturbation order is above the
QMC noise level (≈ 10−5), which is always the case at
sufficiently high temperature, we can compute the impu-
rity free energy from

Fimp = −T (log(Zatom)− log(P0)). (5)

This is because Z = exp(−Fimp/T ).
When the temperature is low, P0 becomes exponen-

tially small, and we can no longer determine Fimp to
high enough precision in this way. However, we can com-
pute very precisely the internal energy of the impurity at
arbitrary temperature. The internal energy of QIM Eimp

is given by

Eimp = Tr((∆ + εimp − ωn
d∆

dωn
)Gimp) + Eimp−pot, (6)

which follows directly from the thermodynamic average
of QIM Hamiltonian. Here the hybridization ∆ and im-
purity levels εimp are determined from the local green’s
function by the standard DMFT self-consistency condi-
tion G−1

local = iωn − εimp − Σ − ∆ These quantities can
be computed very precisely by CTQMC [4], hence the
impurity internal energy can be easily computed with
precision of a fraction of a meV.
To compute precise impurity free energy Fimp at tem-

perature T we first converge DFT+DMFT equations to
high accuracy at this temperature T . Using converged
impurity hybridization ∆(iωn) at T , we raise the tem-
perature of the impurity (keeping ∆ fixed) to T>, which
is chosen such that P0 becomes of the order of 10−5

or higher. This allows us to compute Fimp(T>) us-
ing Eq. 5. We can also compute entropy at T> from
S> = (Eimp(T>) − Fimp(T>))/T>. Next, we evaluate
impurity internal energy for several inverse temperatures
β = 1/T between 1/T and 1/T>, and than we use stan-
dard thermodynamic relations to obtain entropy at lower
temperature T by

S(T ) = S> −
Eimp(T>)

T>
+

Eimp(T )

T
−

∫
1/T

1/T>

Eimp(1/β)dβ(7)

where β = 1/T . This formula is obtained integrating
by parts the standard formula S =

∫
cv/TdT and cv =

dE/dT . We hence obtain Simp and Fimp = Eimp−TSimp

at T which can be inserted into Eq. 4. The rest of the
terms in Eq. 4 are relatively straightforward to evaluate,
however, for a high precision implementation one needs
to combine the terms that largely cancel and evaluate
them together [4].
Previous implementations of free energy within

LDA+DMFT [25, 27, 37] were based on i) evaluating
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the total energy Eq. 1 at range of temperatures, and in-
tegrating resulting specific heat [37], and ii) the coupling
constant integration [25, 27], where total energy of the
solid is needed for a range of coulomb repulsion’s U and
is than integrated over U . In both approaches, the self-
consistent LDA+DMFT solution is needed for many val-
ues of the parameters (either U or T) to evaluate F . In
our method, a single LDA+DMFT calculation for solid
is needed, which makes the method much more efficient.
Furthermore, current implementation of the free energy
is stationary, hence higher precision of F is achieved.

To test the implementation of the LDA+DMFT func-
tional, we computed the volume dependence of the free
energy for three well studied correlated materials: a
metallic early transition metal oxide with perovskite
structure SrVO3, a Mott insulating transition metal ox-
ide FeO in its rock salt structure, and the lanthanide
elemental metal, Cerium, in its face centered cubic struc-
ture, which undergoes a first order iso-structural transi-
tion.

We used the implementation of LDA+DMFT of Ref.31
using projector/embedding technique, which is based on
the Wien2K package [38], and LDA in combination with
nominal double-counting [31, 39, 40]. More technical de-
tails are given in the supplementary [4].

In Fig. 1(a) we show the energy E(V ), and F (V )
for SrVO3 at T = 230K, computed with Eq. 1, and
Eq. 4, respectively. The minima of E(V ) and F (E)

are achieved at 55.71 Å
3

and 55.51 Å
3

. The experimen-

tally determined volume is Vexp = 56.53 Å
3

[42]. The
LDA+DMFT hence slightly underestimates the equilib-
rium volume (1.8%), which gives 0.6% error in lattice
constant. This is well within the standard error of best
DFT functionals for weakly correlated materials.

The metallic nature of SrVO3, with moderate mass en-
hancementsm∗/mband ≈ 2 [4], leads to very small DMFT
corrections in crystal structure [4]. Note that energy min-
imization leads to slightly larger volume than free energy
minimization, contrary to expectations. This is because
energy is computed from non-stationary Eq. 1, while free-
energy is obtained from the stationary expression Eq. 4.
The latter is hence more trustworthy, and should be
considered best LDA+DMFT result. This is also clear
from pressure versus volume diagram in Fig. 1(b), where
−dF/dV agrees more favorably with the experiment than
−dE/dV obtained by MGF.

In Fig. 1(c), we show the impurity entropy obtained
by Eq. 7 for two representative volumes. In this itin-
erant system with very large hybridization, we do not
notice a temperature scale at which t2g shell is degen-
erate (log(6)) nor the scale of the lowest order Kramers
doublet (log(2)), but we notice the Fermi liquid scale in
the steep downturn of S(T ) at T ≈ 350K.

Fig. 2(a) shows E(V ) and F (V ) for paramagnetic Mott
insulating FeO at 300K, above its antiferromagnetic or-

dering temperature. The equilibrium volume of E and

F is 20.28Å
3

and 20.24Å
3

, while the experimental vol-

ume is 20.342Å
3

. The lattice constant is thus under-
estimated for only 0.10% and 0.16%, respectively. In
comparison, all standard DFT functionals severally un-
derestimate FeO lattice constant, for example PBE-sol,
PBE, and LDA for 5.2%, 5.0%, and 7.7%, respectively.

In Fig. 2(b) we show P (V ) diagram and its excellent
agreement with experiment. Fig. 2(c) shows impurity
entropy Simp(T ) for a few volumes. In contrast to metal-
lic SrVO3, here we clearly see an extended plateau of
Simp(T ) = log(6)∗kB around 1000K, which signals com-
plete degeneracy of the t2g shell, and its slight decrease
at 300K in proximity to the AFM state.

The iso-structural transitions of Cerium attracted a
lot of experimental and theoretical effort, but its theo-
retical understanding is still controversial. On the ba-
sis of LDA+DMFT calculation McMahan et.al [11] pro-
posed that the total energy exhibits a double-minimum
shape, concomitant with the appearance of the quasipar-
ticle peak at temperature as high as 1500K, signaling the
first order transition. Using different implementation of
the same method, Amadon et.al [27, 46] proposed that
the transition is entropy driven, and that the total en-
ergy is featureless with the minimum corresponding to
low volume α-phase. Only the addition of the entropy
termmoves the minimum to the larger volume of γ-phase.
In this picture the transition at low temperatures, where
the entropy becomes small and cannot drive the tran-
sition, is intrinsically absent. Yet another proposal was
recently put forward on the basis of LDA+Gutzwiller cal-
culations [47, 48], in which the transition is present even
at zero temperature, but the transition occurs at negative
pressure. The transition is thus detectable even in the to-
tal energy, in the absence of entropy, and becomes second
order at T = 0. In the same method, the finite temper-
ature transition is first order, and the double-minimum
shape of free energy becomes most pronounced at very
high temperature (1500K) [48].

Our LDA+DMFT results for Ce are plotted in Fig. 3.
The total energy curve at 400K clearly shows a region
of very flat shape in the region between the α-γ volume.
Indeed the derivative of the energy −dE/dV displayed
in Fig. 3(c) shows a clear region of zero slope around
1GPa. This is consistent with results of Lanata et al. [47]
finding very similar zero slope of −dE/dV at zero tem-
perature, but is inconsistent with Ref. 27, which finds
no feature in total energy. It is also inconsistent with
McMahan et.al [11] showing clear double-peak in total
energy. On the other hand, the addition of entropy sub-
stantially increase the region of soft volume, as suggested
by Amadon et.al [46]. Indeed the change of the entropy
between the two phases is of the order of 0.9kB, which
is consistent with experimental estimations of 30meV at
400K [49]. The physical mechanism behind this large
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entropy change and unusual volume dependence of en-
ergy is in very fast variation of coherence temperature,
as suggested in Refs. [11, 46], and conjectured in Kondo
volume collapse theory [50]. The phase transition in our
calculation occurs around 1.6GPa, which is not far from
experimentally determined critical pressure of 1.25GPa
at T = 400K. The free energy barrier in our calculation
is however extremely small, and no clear double peak
of F (V ) or negative slope of −dF/dV can be detected
within our 1meV precision of energies. This is similar to
results of Ref. 48 at 400K, but different from Ref. 11.
While the start of the transition region in α-phase is
in good agreement with experiment, the γ-phase vol-
ume is underestimated in our calculation. We believe
that the addition of phonon entropy is needed to further
increase the transition region, and establish larger free
energy barrier between the two phases. Experimentally,
above 460K the α− γ phase transition ends with the fi-
nite temperature critical point. Our calculation at high
temperature 900K shows that the signature of the phase
transition in F (V ) and E(V ) disappears, which is dif-
ferent than predicted by Gutzwiller method [48], where
the largest free energy barrier is found at these elevated
temperatures, but qualitatively consistent with Ref. 11 .

In summary, we successfully implemented the station-
ary formula for the free energy of DFT+DMFT method.
On the example of SrVO3, FeO and Ce metal we demon-
strated that the method successfully predicts lattice vol-
umes in correlated solids, which are difficult for standard
DFT functionals. We also resolved controversy in the
mechanism of the α-γ transition in Cerium.
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[47] N. Lanatà, Y.-X. Yao, C.-Z. Wang, K.-M.
Ho, J. Schmalian, K. Haule, and G. Kotliar,
Phys. Rev. Lett. 111, 196801 (2013), URL
http://link.aps.org/doi/10.1103/PhysRevLett.111.196801.
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FIG. 1: (Color online): a) E(V) and F(V) for SrVO3 at
T = 230K from Eq. 1 and 4, respectively. Entropy term
TSimp(V ) is very small. (b) theoretical and experimental [41]
p(V ). Good agreement between theoretical −dF/dV and ex-
periment is found. (c) Impurity Entropy Eq. 7 for represen-
tative volumes. To obtain Simp, temperature is varied in the
impurity problem only, and not in the LDA+DMFT problem
of the solid.

FIG. 2: (Color online): a) E(V) and F(V) for FeO from
Eq. 1 and 4, respectively. Entropy term TSimp(V ) is large
but almost constant. (b) theoretical and experimental p(V ).
Filled and empty circles are from Refs. 43 and 44, respectively.
(c) Impurity entropy Eq. 7 for representative volumes. The
degeneracy of the t2g shell above 1000K is apparent.

FIG. 3: (Color online): a) E(V) and F(V) for elemental
Cerium from Eq. 1 and 4, respectively. Data are presented for
T=400 and 900K. (b) Entropy Simp(V ) is large and changes
dramatically accros the transition. (c) theoretical and exper-
imental [45] p(V ) diagram.








