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By means of variational methods and systematic numerical analysis, we demonstrate the existence
of metastable solitons in three-dimensional (3D) free space, in the context of binary atomic conden-
sates combining contact self-attraction and spin-orbit coupling, which can be engineered by available
experimental techniques. Depending on the relative strength of the intra- and inter-component at-
traction, the stable solitons feature a semi-vortex or mixed-mode structure. In spite of the fact that
the local cubic self-attraction gives rise to the supercritical collapse in 3D, hence the setting produces
no true ground state, the solitons are stable against small perturbations, motion, and collisions.
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Introduction and model — Solitons result from the
balance between dispersion and nonlinearity in diverse
physical systems. Stable solitons in one dimension (1D)
have been studied extensively in diverse media, most no-
tably nonlinear optics and atomic Bose-Einstein conden-
sates (BECs) [1]. Multidimensional solitons were also
predicted to exist in ferromagnets [2], superconductors
[3], semiconductors [4], BECs [5], baryonic matter [6],
field theory [7], etc. However, creation of 2D and 3D
bright solitons is a much more challenging problem than
in 1D. The fundamental difficulty is the fact that the
ubiquitous cubic local self-attractive nonlinearity gives
rise to the critical and supercritical collapse (blowup)
in the 2D and 3D geometry, respectively [8–10], which
makes all the bright solitons unstable (the self-repulsive
nonlinearity supports stable 2D dark solitons in the form
of delocalized vortices [11]). Several theoretical schemes
have been elaborated for the stabilization of 2D and 3D
solitons. They rely on the use of trapping potentials
[12–16], sophisticated nonlinear interactions [17–20], or
nonlocal nonlinearity [21, 22]. However, it is commonly
believed that a local cubic self-attraction may never give
rise to stable solitons in 3D free space [18, 23].

Recently, an essential result [24], which helps to re-
solve a related but easier problem of the stabilization of
solitons in 2D free space with local cubic attraction, has
been reported in the framework of the model of a binary
BEC subject to the action of spin-orbit coupling (SOC)
[25] (solitons in 1D SOC models have been predicted too
[26], but their stability is obvious). It was found that the
system gives rise to completely stable 2D bright solitons
as the ground state (GS). The stabilization is explained
by the fact that the linear SOC terms come with a co-
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efficient whose dimension is inverse length. The usual
2D systems without SOC feature a specific scaling invari-
ance, which is closely related to the critical collapse. The
scaling invariance makes the family of 2D solitons degen-
erate (they are called Townes solitons in that case [27]),
with a single value of the norm that does not depend on
the soliton’s chemical potential. This norm determines
the threshold for the onset of the critical collapse [8, 9].
Breaking the scaling invariance by introducing a fixed
length scale leads to the stabilization of 2D solitons. This
can be achieved by adding trapping potentials [12–16] or,
in the free space, with the help of SOC [24], which creates
the missing GS by pushing the norm of the 2D solitons
below the collapse threshold. A similar mechanism en-
ables the stabilization of 2D spatiotemporal solitons in a
planar optical coupler [28], with the coupling’s temporal
dispersion [29] emulating the SOC effect.

It has been previously shown that, besides the stabi-
lization of 2D solitons, the interplay of SOC and intrinsic
BEC nonlinearity give rise to a variety of other remark-
able phenomena [30]. However, the possibility of sta-
bilizing 3D solitons in free space with the help of SOC
remained an open question. The fundamental difficulty
is that, on the contrary to the 2D situation, the super-
critical collapse in 3D has zero threshold, hence the norm
cannot take values below the threshold, making the stabi-
lization mechanism outlined above irrelevant in 3D. The
present work reveals that, nevertheless, the self-attractive
binary SOC condensate can support (meta)stable 3D
solitons in free space, in spite of the fact that the set-
ting has no GS at any value of the norm (in other words,
the energy is unlimited from below). We find that the
SOC-induced modification of the dispersion of the 3D
condensate may balance the attractive nonlinearity, cre-
ating metastable solitons. In addition to the absence of
the GS, another fundamental difference of this mecha-
nism from what is outlined above for 2D is that the sta-
bility of the 3D solitons is controlled not by the norm,
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but rather by their energy.
We follow the usual mean-field approach, defining

Ψ(r) = (ψ+, ψ−)
T as the condensate wave function, with

± referring to two pseudo-spin components. Fixing by
means of rescaling the atomic mass and Planck’s con-
stant to be 1, we write the system’s energy as the sum of
kinetic, SOC, and interaction terms:

Etot = Ekin + Esoc + Eint , (1)

Ekin =
1

2

∫

d3rΨ†
p
2Ψ, Esoc = λ

∫

d3rΨ† (p · σ)Ψ,

Eint = −g
2

∫

d3r
(

|ψ+|4 + |ψ−|4 + 2η|ψ+ψ−|2
)

,

where σ = (σx, σy, σz) are Pauli matrices, and p = −i∇
is the momentum operator. We adopt the 3D isotropic
form of the SOC with strength λ [31]. The intra- and
inter-component interaction strengths are defined, re-
spectively, as −g and −ηg, with g > 0 corresponding to
the self-attraction, η being the relative cross-nonlinearity
strength. Below, we fix the nonlinearity strength, by
rescaling the wave functions, to g = 1 and vary the SOC
strength λ, norm N , and cross-nonlinearity strength η.
Dimensional analysis — If L is a characteristic size

of the self-trapped condensate, an estimate for the
amplitudes of the wave functions with norm N =
∫

d3r
(

|ψ+|2 + |ψ−|2
)

is (|ψ±|)max ∼
√
NL−3/2. There-

fore, the three terms in Eq. (1) scale with L as

Etot/N ∼ ckinL
−2−csocλL−1−

(

c
(self)
int + c

(cross)
int η

)

NL−3 ,

(2)

with positive coefficients ckin, csoc, and c
(self/cross)
int . As

shown in Fig. 1, Eq. (2) gives rise to a local minimum of
Etot(L) at finite L, provided that

0 < λN < c2kin/
[

3
(

c
(self)
int + c

(cross)
int η

)

csoc

]

. (3)

Although this minimum cannot represent the GS (which
formally corresponds to Etot → −∞ at L → 0 in the
collapsed state, i.e., the system has no true GS), it cor-
responds to a self-trapped state stable against small per-
turbations. Previously, a similar approximate analysis
has correctly predicted stable quasi-2D solitons in dipo-
lar BEC [22].
Condition (3) suggests that metastable 3D solitons

may exist in free space when the SOC term is present,
while its strength λ is not too large, N and η being not
too large either. We confirm these expectations below by
means of accurate numerical analysis.
The Gross-Pitaevskii equation — Energy functional (1)

gives rise to the Gross-Pitaevskii equation (GPE) for the
spinor wave function,

[

i
∂

∂t
+

1

2
∇2 + iλ∇ · σ

+g

(

|ψ+|2 + η|ψ−|2 0
0 |ψ−|2 + η|ψ+|2

)]

Ψ = 0. (4)
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FIG. 1: (Color online) Etot as a function of condensate’s size
L, as per Eq. (2). The red solid, blue dashed, and green
dot-dashed lines represent the energy’s variation when λ = 0,
and λ > 0 does or does not satisfy condition (3), respectively.

Assuming axial symmetry of the expected self-trapped
states (it is the highest symmetry admitted by the SOC
[24]) and using cylindrical coordinates (r, z, φ), the sta-
tionary wave function with integer vorticity m ≥ 0 and
chemical potential µ is looked for as

(

ψ+

ψ−

)

= e−iµt

(

eimφ f1(r, z)
ei(m+1)φ f2(r, z)

)

. (5)

Following the terminology introduced for 2D solitons in
Ref. [24], self-trapped states (5) with m = 0 are called
semi-vortices (SVs), the states with m ≥ 1 being their
excited states. Similar to the 2D system [24], our calcula-
tions demonstrate that the energy of the SV with m = 0
is always lowest, therefore we focus on m = 0.
Due to the up-down symmetry of underlying Hamilto-

nian (1), degenerate to SV (5) is its flipped counterpart,

(

ψ+

ψ−

)

= e−iµt

(

e−i(m+1)φ f∗
2 (r, z)

e−imφ f∗
1 (r, z)

)

, (6)

with ∗ standing for the complex conjugate. Although
the system is axially symmetric, stationary states do not
necessarily follow this symmetry. In particular, any su-
perposition of ansätze (5) and (6) breaks the symmetry.
Following the nomenclature introduced in Ref. [24], we
call the state generated by such a superposition a mixed

mode (MM). Approximating it by the superposition with
mixing angle θ [32],

ψ+ = (cos θ) f1(r, z)− (sin θ) f∗
2 (r, z) e

−iφ ,

ψ− = (sin θ) f∗
1 (r, z) + (cos θ) f2(r, z) e

iφ ,
(7)

straightforward calculation relates its energy to that of
the respective SV:

EMM = ESV + (1− η) sin2 θ cos2 θ∆E , (8)

∆E = 2πg

∫

rdr

∫

dz
(

|f1|4 + |f2|4 − 4|f1|2|f2|2
)

.

Our numerical calculations show that ∆E is always pos-
itive, hence, like in the 2D case [24], the SV (MM) has
lower energy at η < 1 (η > 1) . This prediction is con-
firmed below by the full numerical analysis.
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Variational analysis — To produce analytical results
in a more accurate form than given by Eq. (2), we here
adopt the following ansatz for the SV:

fn = in−1 (An + iBnz) r
n−1e−αnr

2−βnz
2

(n = 1, 2) ,

with real parameters An, Bn, and αn > 0, βn > 0. The
substitution of this ansatz into expression (1) for the full
energy and minimizing it with respect to the free param-
eters produces algebraic equations which can be readily
solved numerically. Stable solitons correspond to finite
values of αn and βn, while αn, βn → 0 (spreading) and
αn, βn → ∞ (collapsing) indicate that no solitons ex-
ist. Results of the calculations are summarized in Fig. 2,
in which the stable 3D solitons are predicted to exist in
the shaded areas. We thus conclude that the solitons in-
deed exist, provided that λ, N and η are not too large, in
agreement with the qualitative prediction of Eq. (3) from
the dimensional analysis. In particular, an important
conclusion is that, for fixed λ and η, the stable solitons
always exist in a finite interval of the norm,

0 ≤ N ≤ Nmax (λ, η) . (9)

Furthermore, as shown in Fig. 3(a), for η < 1 the energy
of the SV predicted by the variational analysis (VA) is
lower than that for the MM, and vice versa for η > 1, in
agreement with the prediction of Eq. (8).
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FIG. 2: (Color online) 3D stable solitons are predicted by the
variational calculation in blue shaded regions of the respective
parameter planes. In panel (a), these are SVs (semi-vortices)
at η < 1, and MMs (mixed modes) at η > 1, with the bound-
ary between them depicted by the black solid line. In (b), the
entire stability area is filled by the solitons of both types, as
the SVs and MMs have equal energies at η = 1. The predic-
tions are accurately confirmed by full numerical simulations,
as indicated by red crosses and black dots, which indicate,
respectively, the absence and presence of stable solitons for
respective sets of parameters.

The red squares in Fig. 3(b) represent the variational
results for the soliton’s chemical potential, µ, plotted
as a function of norm N for g = λ = 1 and η = 0.3.
In agreement with the analytical prediction given by
Eq. (9), there is no threshold (minimum norm) neces-
sary for the appearance of the solitons, which exist up to
a N = Nmax. Furthermore, the negative slope of the de-
pendence, dµ/dN < 0, of the upper branch is an indica-
tion of the stability of the soliton families, pursuant to the
Vakhitov-Kolokolov (VK) criterion [8, 24, 33]. The lower

branch, which does not satisfy the VK criterion, repre-
sents solitons corresponding to the energy maximum on
the blue dashed curve in Fig. 1. In the limit of µ→ −∞,
they carry over into the well-known strongly unstable 3D
solitons of the GPE [34].

(a) (b)

FIG. 3: (Color online) (a) Energies of the SVs and MMs,
as predicted by the variational approach for g = λ = 1 and
N = 8. The two curves cross at η = 1, where the SV and MM
have equal energies. (b) The numerically (blue circles) and
variationally (red squares) found chemical potential vs. the
norm for the SVs at g = λ = 1 and η = 0.3. The numerical
branch extends up to N = Nmax, in agreement with Eq. (9).

Full numerical calculations — The prediction for the
existence of the stable 3D solitons in free space, provided
by the analytical approximations, calls for verification
by direct simulations of GPE (4). First, we generated
stationary states by running the simulations in imagi-
nary time. Typical examples of the so produced SV and
MM density profiles are displayed in Fig. 4. Symbols in
Fig. 2, which indicate the absence and presence of stable
solitons, are in good agreement with the VA.

FIG. 4: (Color online) Density profiles of 3D solitons for N =
8 and g = λ = 1. (a) An SV for η = 0.3, whose fundamental
and vortical components, |ψ+| and |ψ−|, are plotted in (a1)
and (a2), respectively. (b) An MM for η = 1.5, with (b1),
(b2) displaying |ψ+| and |ψ−|, respectively. In each subplot,
different colors represent constant-magnitude surfaces, |ψ±| =
(0.96, 0.4, 0.04) × |ψ±|max.

The blue circles in Fig. 3(b) represent the numerically
obtained chemical potential, which are in good agreement
with the prediction of the VA. The unstable branch from
the VA, however, cannot be produced by the imaginary-
time integration. We have verified the stability of the
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solitons belonging to the upper branch in Fig. 3(b) by
real-time simulations with random perturbations added
to the initial conditions, confirming that the VA accu-
rately predicts the SV and MM stability areas which are
displayed in Figs. 2 and 3.
Setting quiescent solitons in motion is another nontriv-

ial issue, as the SOC terms break the Galilean invariance
of the system. To construct solitons moving along the z-
axis with velocity vz , so that ψ± = ψ±(r, φ, z−vzt, t), we
have rewritten the GPE system (4) in the respective mov-
ing reference frame. In this form, the velocity term affects
the SOC strength along the z axis, breaking the symme-
try between the two components of the spinor. As a re-
sult, positive (negative) vz tends to increase the popula-
tion of the spin-down (-up) component. In Fig. 5, we plot
the ratio of the spin populations as a function of vz . Both
VA and numerical results are displayed, showing qualita-
tively similar results. At vz < −0.9 and vz > +0.4, the
moving semi-vortex practically degenerates into a single-
component soliton – the fundamental or vortical one, re-
spectively – thus reducing the setting to that for the sin-
gle GPE with the cubic self-attraction, where all 3D soli-
tons are strongly unstable. Consequently, the speed of
the stably moving solitons cannot be too large.

FIG. 5: (Color online) The ratio of the spin populations as
a function of velocity vz for the moving SV with N = 8,
g = λ = 1, η = 0.3, and N± ≡

∫
d3r |ψ±(r)|2. The red

dashed lines with squares are variational results, while the
blue solid lines with circles are obtained numerically, using
the imaginary-time integration in the moving reference frame.

Finally, to consider collisions between moving solitons,
we place two solitons centered at initial positions (r, z) =
(0,±z0), and include a trapping potential, Ω2(r2+z2)/2.
The solitons then start moving to collide at the trap cen-
ter, with the trapping frequency Ω used to control the
collision velocity. Figure 6 depicts two collision events
for the same initial soliton pair. In panel (a), the slowly
moving solitons feature a quasi-elastic collision, while in
(b) the collision leads to destruction of faster solitons.
This shows the solitons are robust against slow collisions.
Conclusion — The combination of the analytical and

numerical methods reveals that stable free-space 3D soli-
tons can be supported in the binary atomic conden-
sate with attractive interactions and properly engineered
SOC, notwithstanding the presence of the supercritical
collapse in the same setting. This is the first example of
metastable solitons in the 3D homogeneous environment
with local cubic self-attraction, which exist in spite of the

FIG. 6: (Color online) Collisions of stable 3D SVs in the
harmonic trap for N = 8, g = λ = 1, and η = 0.3. Panels
(a1, a2), (a3, a4), (a5, a6), (a7, a8) and (a9, a10) display
density distributions for Ω = 0.5 at t = 0, 1.2, 3.2, 4 and 6,
respectively. Panels (b1, b2), (b3, b4), (b5, b6), (b7, b8) and
(b9, b10) display the distributions for Ω = 1 at t = 0, 1, 1.4,
2 and 3, respectively. In all panels, the left and right subplots
display, severally, |ψ+| and |ψ−|.

nonexistence of the GS (ground state) in the system. The
SOC plays a crucial role for the stabilization, altering the
energy of the self-trapped states so as to create the lo-
cal energy minimum. This is the fundamental difference
from the recently discovered stabilization mechanism in
2D [24], which readily creates a missing GS below the
critical value of the norm (at N < Ncr), where solitons,
if any, cannot be destabilized by the critical collapse, as it
does not occur at N < Ncr, but no solitons could be cre-
ated at N ≥ Ncr. In 3D, the existence of the metastable
solitons is controlled not by the norm [in an appropriate
parameter region, they can be created for any N , al-
though the appropriate region becomes very narrow for
very large N , as seen in Fig. 2(b)], but by the energy, as
the above analysis clearly shows.

Although we have adopted the isotropic SOC term in
the Hamiltonian, in the form of λp · σ, the stabilization
of the 3D solitons does not critically depend on this form,
additional analysis demonstrating that the metastable
3D solitons exist as well if the SOC strength is different
along different axes. It may also be interesting to find out
if 3D solitons can be stabilized by spatially localized SOC
(for 1D solitons, this setting was studied in Ref. [35], but
the stability is not an issue in that case). Influence of the
Zeeman splitting, which breaks the up-down symmetry
of the spinor components, on the stability of the solitons
is another relevant problem for further analysis.

On the experimental side, 2D SOC was recently cre-
ated in an ultracold Fermi gas [36]. Realization of 3D
SOC may be expected in the near future, as there is no
fundamental obstacle for doing that.
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Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep. Prog.
Phys. 77, 126401 (2014); H. Zhai, ibid. 78, 026001
(2015).

[31] B. M. Anderson, G. Juzeliūnas, V. M. Galitski, and I. B.
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