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Despite great interest in the quantum anomalous Hall phase and its analogs, all experimental studies in elec-

tronic and bosonic systems have been limited to a Chern number of one. Here, we perform microwave transmis-

sion measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Bandgaps with large Chern

numbers of 2, 3, and 4 are present in the experimental results which show excellent agreement with theory. We

measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose

number and direction match our Chern number calculations.

The Chern number [1] is an integer defining the topological

phase in the quantum Hall effect (QHE) [2], which determines

the number of topologically-protected chiral edge modes. The

quantum anomalous Hall effect (QAHE) possesses these same

properties as an intrinsic property of the bandstructure with

time reversal symmetry breaking [3, 4]. Recent experiments

have discovered the QAHE and its analogues in ferrimagnetic

photonic crystals [5], magnetically-doped thin films [6] and

in ultracold fermion lattices [7]. However, the Chern numbers

observed in all of these systems were limited to ±1. Finding

larger Chern numbers would fundamentally expand the known

topological phases [8–12].

Here, we provide the first experimental observation of

Chern numbers of magnitude 2, 3 and 4, by measuring bulk

transmission, edge transmission, and the edge mode disper-

sion relations in a ferrimagnetic photonic crystal. The excel-

lent agreement between the experiment and modeling allows

us to identify various topological bandgaps and map out the

dispersion relations of one-way edge modes for the first time

in any QHE or QAHE system in nature.

In a 2D system one can realize bands with nonzero Chern

numbers, and generate the QAHE, by applying a T-breaking

perturbation [13–15]. The Chern number is defined as the in-

tegral of the Berry flux over the entire Brillioun zone. When

connected bands are gapped by a T-breaking perturbation, the

bands will exchange equal and opposite Berry flux at each

degenerate point, with the total Berry flux exchanged deter-

mining the Chern number. For instance, two isolated bands

connected by one pair of Dirac points gapped by T-breaking

will acquire ±2π Berry flux (π from each Dirac point) and a

Chern number associated with the bandgap (“gap Chern num-

ber”) of ±1. A general way to calculate the gap Chern number

(Cgap = ΣCi) is to sum the Chern numbers of all the bands

below the bandgap [16]. A bandgap with Cgap = 0 is trivial,

while a bandgap with Cgap 6= 0 is topologically nontrivial.

In our previous theoretical study we found that the magni-

tude of the gap Chern number can be increased above one by

simultaneously gapping multiple sets of Dirac and quadratic

degeneracies. If Berry flux from the gapped degeneracies adds

constructively, Cgap can be large. In Fig. 1a we present a the-

oretical topological gap map for a 2D ferrimagnetic photonic

crystal as a function of the externally applied magnetic field

and the frequency, showing nontrivial bandgaps with Cgap

from −4 to 3. We studied this same square lattice in an ex-

periment, to verify these predictions.

The experimental configuration resembles a prior work

which demonstrated |Cgap| = 1 [5]. A square lattice of ferri-

magnetic garnet rods is placed between two conductive copper

plates. This configuration forms a parallel-plate waveguide,

with the electric field perpendicular to the plate. Since the

electric field for the fundamental mode is constant as a func-

tion of height, this is equivalent to a 2D system. The modes

in the photonic crystal are excited by antennas attached to the

top plate and fed to a network analyzer. Around the boundary

of the system we placed an absorber to minimize reflections

and outside interference. We include an overhead image of

one of the crystals we constructed in Fig. 1d.

To observe the QAHE analog in the experiment, we break

T-symmetry by applying a spatially uniform magnetic field

to the ferrimagnetic garnet rods, which acquire off-diagonal

imaginary parts in the permeability tensor [17]. Unlike elec-

trons, the external magnetic field does not interact directly

with photons. However, for this system, Maxwell’s equations

can be written in the exact same form as the Schrodinger equa-

tion with a periodic vector potential [15]. This makes the sys-

tem an analogue of the QAHE. Our photonic crystals were

placed in the MIT cyclotron magnet, and the magnetic field

was swept between 0.03 T and 0.55 T to characterize the trans-

mission of the photonic crystal as a function of the magnetic

field and the frequency.

We show the experimental transmission through a bulk pho-

tonic crystal in Fig. 1c. Here the color illustrates the am-

plitude of the transmission between the antennas in decibels

(S12 = 20 log Ein

Eout

). In the plots there are several deep blue

regions of low transmission that clearly correspond to the lo-

cations of bandgaps in the gap map. The sweeping feature

that extends diagonally across the figure is due to the gyro-

magnetic resonance of the ferrimagnetic garnet rods (Supple-

mentary Material). The resonant frequency of the effective

permeability is plotted with a black line in Fig. 1a.

In Fig. 1b we present the corresponding theoretical data for

transmission through a lattice of the same size and dimension



2

0.1 0.3 0.5

2

4

6

8

10

12

Gap Map
F

re
q

u
e

n
c
y
 (

G
H

z
)

Theory

Magnetic field (T)
0.1 0.3 0.5

Experiment

 

 

0.1 0.3 0.5

a

e

cb d

1

2

    B=0.4 T

 f=8.07 GHz

1

-3

0

-1

Gap Chern number

2

-4

3

Sample

3 cm

Simulation

−100 −50 0

dB

−100 −50 0

dB

Figure 1. Comparison of theoretical gap map and bulk transmission to experimental transmission measurement in a 2D ferrimagnetic photonic

crystal. a) Theoretical topological gap map as a function of the magnetic field and the frequency with each bandgap labeled by its gap

Chern number. The diagonal black line indicates the resonance in the effective permeability (Supplementary Material) b) Theoretical bulk

transmission c) Experimental bulk transmission d) Experimental configuration with the lattice geometry (top metal plate removed). The

antenna locations are marked with “1” and “2”. e) Simulation geometry with the green line representing the receiving antenna, and the green

circle representing the transmitting antenna.

calculated with COMSOL. One of the transmission simula-

tions is shown in Fig. 1e. For direct comparison, the trans-

mission data in Fig. 1b is plotted with the same colorbar scale

as the experiment in Fig. 1c. The slight offset of about 0.04 T

in the magnetic field between the theoretical and experimen-

tal plots is caused by demagnetization (Supplementary Ma-

terial). Clearly the theoretical and experimental transmission

bear strong resemblance to each other and the topological gap

map, showing that a square lattice of ferrimagnetic rods can

contain a wide variety of different Cgap numbers.

Several nontrivial bandgaps in Fig. 1 and in the supplemen-

tary material occur even at low magnetic fields. This indicates

that topological effects can be achieved at low applied mag-

netic fields(∼ 0.03 T) enabling various studies and applica-

tions. Furthermore, these same bandgaps would remain open

at zero external magnetic field by using ferrimagnetic materi-

als with remanent magnetization [18]; this way, a future ex-

periment could be performed even without external magnetic

fields.

One-way edge modes are present at the boundary between

two crystals with a nontrivial and a trivial bandgap respec-

tively, or at the boundary between crystals with nontrivial

bandgaps with different Cgap [4, 20]. If the bandgaps of two

neighboring crystals overlap in frequency, the number of edge

states in the shared frequency gap is determined by the differ-

ence between the gap Chern numbers of each crystal. The sign

of this difference determines the directions of the edge states.

This means that with the nontrivial bandgaps we found, con-

structing one-way waveguides with up to seven modes is pos-

sible. If one of the materials is trivial (Cgap = 0), like metal
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Figure 2. Experimental edge transmission measurement and Fourier transform (FT) of mode profiles along the copper boundary. a) S21. b)

S12. The bandgaps that are nontrivial have direction-dependent edge transmission, because the interface of a nontrivial bandgap with a trivial

bandgap (copper boundary) supports one-way modes. In a) and b) this causes the nontrivial bulk bandgaps from Fig. 1c to be present in one

direction (e.g. S12) and be absent in the other (e.g. S21), which we highlight for the Cgap = −4 bandgap with black boxes. The trivial

bandgaps around 4 GHz do not support one-way modes, and so do not exhibit direction-dependent transmission. c) Experimental FT of edge

mode profiles and the theoretical edge bandstructures with the edge modes in red and the bulk bands in gray. The range of wavevectors included

in both plots is the same and includes only one Brillouin zone. The number of one-way edge modes in both sets of plots agrees with |Cgap|
from Fig. 1a, while the sign of Cgap is consistent with the theoretical group velocity (from the edge mode dispersion) and the directional

transmission in a) and b).

or air, the number of edge states equals the gap Chern number

of the crystal, with the sign of this number determining their

directions.

To provide more evidence of the topological state of these

bandgaps and the one-way modes we modified the setup to in-

clude a highly conductive copper boundary at the edge of the

crystal. This boundary acts as a mirror with a trivial bandgap.

We place two antennas near this edge on each side of the sam-

ple and measure the transmission between them. In Fig. 2a

and Fig. 2b we present both the S12 and S21 parameters to de-

scribe the direction-dependent transmission of the edge modes

along the metal boundary. S12 refers to exciting the second

antenna and measuring with the first antenna, while S21 is the

opposite.

The bandgaps that are nontrivial (Cgap 6= 0) can be iden-

tified in Fig. 2 because they will have direction-dependent

edge transmission. Specifically the nontrivial bandgaps mea-

sured in Fig. 1c will appear in either Fig. 2a or b, but not

both. We show this explicitly for the Cgap = −4 bandgap by

highlighting the direction-dependent transmission with gray

boxes. This arises from the directional edge states as fol-

lows. In one direction, the group velocity of the edge modes

is opposite that required to travel to the receiving antenna, so

the transmission measurement will record the bulk bandgap.
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However, in the other direction, the group velocity of the edge

modes is in the same direction as is required to get to the

receiving antenna, so the bandgap will appear to be nonex-

istant. Trivial bandgaps (Cgap = 0) around 4 GHz do not

support one-way edge modes, and so do not exhibit direction-

dependent transmission at the edge.

To further study the topological nature of these bandgaps

we measured the mode profile at the edge of the photonic crys-

tal. We accomplished this by mounting one antenna for ex-

citation to the lower plate, and another small dipole antenna

for measurement to the upper plate [19]. During the measure-

ment, the upper plate was translated a total of 47 cm in 2.5mm

steps. At each step both the phase and amplitude of the elec-

tric field was recorded (Supplementary Material). From this

spatial data the mode profile in the waveguide can be recon-

structed. The Fourier transform of the mode profile produces

the dispersion relation of the waveguide which we present on

the left-hand side of Fig. 2c.

In Fig. 2c on the right-hand side we include a compari-

son with the edge band calculations with the bulk bands in

gray, and the edge modes in red. It is clear that the calculated

edge-mode dispersion shows an excellent agreement with the

dispersion relations extracted from experiments. The number

of edge modes is equal to the gap Chern number for each in-

set. The sign of Cgap is consistent with the group velocity of

the edge modes and agrees with the directional edge trans-

mission data in Fig. 2a and 2b. In the supplementary material

we present additional simulations validating these results for

Cgap = −3 and −4. These results consistute the first direct

measurement of one-way edge mode dispersion in any QHE

system.

To further study the gap Chern numbers of the observed

topological bandgaps, we construct a topological one-way cir-

cuit [11]. As illustrated in Fig. 3d, this consists of a Cgap = 2

(a=3.0 cm) crystal and Cgap = 1 (a=2.4 cm) crystal, with a

copper boundary on the edge. We present the design and cal-

culations characterizing the Cgap = 1 crystal in the Supple-

mentary material, while the results from the Cgap = 2 crystal

are shown in Fig. 1 and Fig. 2. From the rules described ear-

lier, there will be two edge states flowing downwards between

the metal boundary and the Cgap = 2 crystal as indicated

with arrows in Fig. 3d. These edge states will “split” at the

junction with one edge state flowing away along the boundary

between the Cgap = 1 and the Cgap = 2 crystal, and the other

continuing along the metal and Cgap = 1 crystal interface.

In Fig. 3a-c we present the transmission between ports 1-3

and a 4th port located at the junction as labeled in Fig. 3d.

The highlighted yellow region indicates the shared bandgap

between the Cgap = 1 crystal and the Cgap = 2 crystal. For

each of the measurements, it is clear that in one direction we

have a strong bandgap, with a signal level at the noise floor of

about -100 dB, while in the opposite direction there is 50 to

60 dB more transmission. These edge state directions are con-

sistent with the theoretical predictions and prove the existence

of Cgap>1 for the upper crystal. The results from Fig. 3 were

obtained under an applied magnetic field of 0.365 T, although
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Figure 3. Topological one-way circuit implemented using Cgap = 1

(a=2.4 cm) and Cgap = 2 (a=3.0 cm) photonic crystal. a)-c) Trans-

mission plots showing edge transmission between antennas at 1,2,

and 3 and antenna 4 located at the center. Shared bulk bandgap for

Cgap = 1 and Cgap = 2 crystals is highlighted in yellow. d) Ex-

perimental configuration illustrating crystals with copper boundary

(Cgap = 0) on left and antenna locations 1-4. Arrows indicate the

theoretical direction and the number of the edge states at each inter-

face. The transmission data is consistent with predicted edge state

directions, which confirms that the upper crystal has Cgap > 1.

there was a window extending approximately from 0.32 T to

0.4 T where the Cgap = 2 and Cgap = 1 bandgaps from each

crystal were well aligned (Supplementary Material).

In conclusion, we experimentally constructed a square lat-

tice ferrimagnetic photonic crystal with a bandstructure com-

prised of high Cgap (-4 to 3) bandgaps and measured the dis-

persion relations of the multimode one-way edge waveguides.

Fundamentally, having bandgaps with higher gap Chern num-

bers greatly expands the phases available for topological pho-

tonics. These results can potentially enable multi-mode one-

way waveguides with high capacity and coupling efficiencies,

as well as many other devices [21–24]. A topological pho-

tonic circuit can also be made by interfacing photonic crystals

of various Cgap, with one-way edge states combining together

or splitting off at the junctions. Given the rapidly expanding

literature on the QAHE and its analogs for |Cgap| = 1 [4, 25–

30], many more avenues of research are now possible because

of the greater range of topological phases that can be investi-

gated. Our approach can be readily extended to other systems

of Bosonic particles such as magnons [31], excitons [32], and

phonons [33, 34].
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