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Motivated by the general problem of moving topological defects in an otherwise ordered state and
specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening
experiments in freely-suspended smectic-C films[1], I study the deformation, energetics and dynamics
of moving vortices in an overdamped XY model and show that their properties are significantly and
qualitatively modified by the motion.

PACS numbers:

Introduction: Topological defects play a central role in
phase transitions, relaxation of generalized strain (e.g.,
current dissipation in a superfluid, strain relaxation in
a crystalline solid, etc.)[2], coarsening dynamics after a
quench into an ordered state[3]. They appear in a broad
range of physical realizations from superfluids and liquid
crystals[4] to early universe baryogenesis[5].

Many physical systems involve topological defects mov-
ing (stochastically or deterministically) through an oth-
erwise ordered medium. Although it is usually tacitly
assumed that defect’s properties (texture structure, in-
teraction, dynamics, etc) are not modified by its motion,
with the center r0 simply boosted r0 → r0(t) by the mo-
tion, there is no a priori reason for this to be the case.
Instead, not unlike a relativistic charged particle, a mov-
ing defect is defined and governed by the dynamics of
the associated vector field, requiring a nontrivial analysis
that is the subject of this Letter.

Stimulated by this general question, and by the
anomalous vortex-antivortex annihilation and coarsening
dynamics[3] observed in freely-suspended smectic-C films
experiments[1, 6, 7], I explored the nature of moving vor-
tices in an overdamped two-dimensional (2D) XY model,
applicable to a broad range of soft matter systems. In
this Letter I report the results of these studies. With
some modifications these may also extend to vortices in
a nonzero-temperature superfluid and superconductor in
the presence of a background supercurrent or dislocations
in a strained crystal.

Results: Before turning to the analysis, I summarize
the results of this study. I find that a vortex imposed to
move with a constant velocity v in an ordered medium of
stiffness K and damping γ, beyond a length scale

ξv =
K

γv
≡ D/v ≡ k−1v (1)

exhibits a nontrivial longitudinal distortion of its stan-
dard, purely transverse form[4], latter retained on length
scale below ξv. In the steady state the resulting deformed
vortex exhibits a parabolic comet-like tail, extending
across the system to which most of the 2π phase winding
is confined (see Figs.1,2). While a motion-induced distor-
tion is not surprising, its long-range nature and qualita-

FIG. 1: A vector field corresponding to a phase θ(r) for a
vortex-antivortex pair co-moving to the right with velocity v.

FIG. 2: A vortex-antivortex counterpropagating pair relevant
to the annihilation problem. The motion-induced comet-like
tails (that lead to a linearly diverging vortex elastic energy)
and a suppression of the deformation between vortices (that
leads to a weakened interaction) are clearly visible.

tive consequences (see below) indeed are. For a transient
state at time t after a vortex begins to move, the steady-
state distortion only extends out to a time-dependent
anisotropic “horizon” vt ×

√
Kt/γ, beyond which the

purely transverse vortex field is nearly undistorted by
the motion. This is analogous to the Lienard-Wiechert
potential of a moving point charge[9]. All other predic-
tions follow from this result. Specifically, a ±2π vortex
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FIG. 3: A transient vector field of a vortex moving for time t,
exhibiting a steady-state distortion out to an elliptical “hori-
zon” vt×

√
Kt/γ, and purely transverse vortex field beyond.

steady-state mobility

µv ≈
1

πγ ln(2ξv/a)
∼ 1/| ln v| (2)

vanishes logarithmically with vanishing velocity, ξv cut-
ting off the lnL/a divergence of a stationary vortex drag
coefficient, a result that was previously found via scal-
ing and numerical analysis in earlier studies[2, 3, 10, 11]
(a is the vortex core size). Thus, a 2D vortex exhibits
a breakdown of a linear response to an external force
f , with a truly nonlinear velocity-force characteristics
v(f) ∼ f/| ln f |.

The “comet tail” texture of a moving ±2π vortex leads
to an elastic energy that diverges linearly with system
size

Ev ≈ πK (L/ξv + ln ξv/a) , (3)

with the usual logarithm cut off by the length ξv ∼ 1/v,
that diverges with a vanishing velocity. The interaction
between two ±2π moving vortices strongly depends on
their velocities and orientation relative to the separation
vector, r. With the eye on the problems of a vortex-
antivortex annihilation and nucleation by an imposed

strain, I find the interaction potential U
‖
v,−v(r), for a

vortex and antivortex moving toward each other, v ‖ r
(Fig.2):

U
‖
v,−v(r) = 2πK

[
c− sinh−1(ξv/r)

]
, (4)

≈ 2πK

{
c− ξv/r, a� ξv � r,
ln r/a, a� r � ξv,

and a potential U⊥v,v(r) for a pair co-moving with velocity
v ⊥ r (Fig.1):

U⊥v,v(r) = 2πK
[
c− sinh−1(ξv/r) +

√
r2/ξ2v + 1

]
, (5)

≈ 2πK

{
c+ r/ξv, a� ξv � r,
ln r/a, a� r � ξv,

with c = ln ξv/a. Thus, in the annihilation configura-
tion (Fig.2), vortex attraction for separation beyond ξv

is suppressed by the motion. Conversely and even more
dramatically, I predict that vortex pair motion in the
transverse configuration (Fig.1) leads to a linear confine-
ment on long length and time scales.

The above velocity-dependent vortex mobility and in-
teraction qualitatively modify the equation of motion
for the vortex-antivortex separation. This leads to a
late-time slowed annihilation dynamics that may be an
important ingredient in the anomalies observed in the
experiments[1].

Analysis: With the above motivation in mind, I now
turn to the analysis of moving ±2π vortices in a 2D over-
damped XY model (in the isotropic approximation the
generalization to higher vortex charge is straightforward)

γ∂tθ = K∇2θ, with ∇×∇θ = 2πδ(r− rv(t))ẑ, (6)

searching for a vortex solution θ(r, t), that for simplic-
ity I take to be moving at constant velocity defined by
rv(t) = vt. Despite ignoring a number of ingredients[12],
I expect it to be a core description of many systems where
damping is dominant.

To this end, I take the solution to be θ(r, t) = θv(r −
vt) + θs(r, t), where θv(r) = ϕ = arctan(y/x) is the az-
imuthal polar angle that is the standard purely transverse
solution of the static problem (γ = 0), that enforces a
moving unit of vorticity. The θs(r, t) part is a nonsin-
gular, single-valued function (with a purely longitudinal,
curl-free gradient) determined by the requirement that
θ(r, t) satisfies the equation of motion (6). Thus θs(r, t)
describes the distortion of a moving vortex about the sta-
tionary form θ(r) = ϕ, with its spatial Fourier transform
satisfying

γ∂tθs(k) +Kk2θs(k) = γv ·∇θv(k)e−ik·vt. (7)

The exact solution is easily found either directly for
θs(r, t) or by first Galilean-transforming to the moving
vortex frame r′ = r − vt, ∂t → ∂t + v · ∇r′ , where the
distortion is θ′s(r

′, t) ≡ θs(r′ + vt, t).

For a vortex that has been moving forever the Fourier
transform of the steady state distortion (vanishing for
v = 0) is given by

θ′s(k) =
γv ·∇θv(k)

Kk2 − iγv · k
=
−2πikv · ẑ× k

k2(k2 − ikv · k)
, (8)

where kv ≡ γv/K. This leads to the “elastic” energy
spectrum, |∇θ(k)|2 = 4π2(k2 + k2v)/[(kv ·k)2 + k4], that,
on length scales beyond ξv (k � kv) is highly anisotropic,
akin to that of a smectic liquid crystal. On shorter length
scales it reduces to that of an isotropic stationary (undis-
torted) vortex[4].

In real space the steady-state distortion for a 2π-vortex
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moving along the x-axis, in the vortex frame is given by

θ′s(r) ≈ −
∫ ∞
0

dq

q

e−q|x̂| sin qŷ

q + 1
(9)

−2Θ(−x̂)

∫ ∞
0

dq

q

e−q|x̂| sin qŷ

q2 − 1

[
1− e−q(q−1)|x̂|

]
,

where x̂ = x/ξv, ŷ = y/ξv, and Θ(x) is the Heaviside
step function. Evaluating above integrals numerically
and adding the singular part of the vortex, θv(r) = ϕ,
gives the real-space vector fields illustrated in Figs. 1, 2.

A transient-state field of a vortex that has been mov-
ing for time t (particularly relevant for the annihilation
problem) can also be computed exactly and is given by

θ′s(r, t) =

∫
k

v ·∇θv(k)
1− e−

K
γ (k2−ik0·k)t

k2 − ik0 · k
eik·r. (10)

Its key generic features are controlled by three length
scales ξv, ξ⊥ ≡

√
Kt/γ, ξ‖ = vt. At time t > t∗ ≡ ξv/v,

such that ξv � ξ⊥ � ξ‖, one can see from the solution
(10) that on scales shorter than an anisotropic domain
ξ‖ × ξ⊥, the solution reduces to the “comet-tail” steady-
state one, (9) (Figs. 1, 2). On longer scales the vortex
distortion reduces to θ′s(r, t) ≈ vt ·∇θv(r

′), which when
combined with the singular part gives

θ′(r′, t) ≈ θv(r′) + vt ·∇θv(r
′) ≈ θv(r′ + v0t) = ϕ. (11)

Thus on scales outside of the vt ×
√
Kt/γ domain the

vortex field reduces to that of an undistorted stationary
vortex θ(r, t) = ϕ at its initial, t = 0 position (see Fig.3).
This is a diffusive vortex analog of a “causal horizon” be-
yond which the distortion associated with a moving vor-
tex had not had sufficient time to propagate out. Other
results (e.g., a vanishing vortex mobility, vortex energy
and interaction between moving vortices) follow directly
from the above moving vortex solution.

Vortex mobility: In the steady-state the power input
by the external force F to drive the vortex at velocity
v is balanced by the rotational power dissipated, Prot =∫
r
(∂tθ)(K∇2θ) =

∫
r
γ(∂tθ)

2 = γv2
∫
r
(∂xθ)

2, gives the
vortex drag coefficient, γv ≡ µ−1 (inverse mobility)[2,
10, 11]:

γv = γ

∫ a−1

0

dkk

∫ 2π

0

dθ
sin2 θ

k2v cos2 θ + k2
, (12)

= πγ sinh−1
(

1

kva

)
≈ πγ ln(2ξv/a) ∼ γ ln v.

Thus, at finite velocity, a previously noted divergence
with system size L or vortex separation r [3, 6, 7] is cutoff

by the velocity-length ξv ∼ 1/v, thereby displaying a
nonlinear velocity-force characteristics i.e., an absence of
linear response down to a vanishing force.

Vortex energy: It is of interest to calculate the elastic
energy Ev = K

2

∫
d2r|∇θ|2 stored in a moving vortex. In
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FIG. 4: Vortex-antivortex separation r(t) as a function of
time, a solution of (15) (solid), is significantly slowed down
compared to the “naive” dynamics γvdr/dt = −K/r (dashed).

steady-state, using (8) I find:

Ev = πK
(√

(L/ξv)2 + 1 + ln(ξv/a)− sinh−1(ξv/L)
)
,

that for vanishing velocity, L � ξv reduces to lnL/a
of a stationary vortex, but for a rapidly moving vortex,
L� ξv gives the energy (3), that diverges linearly with L
and with the standard logarithm cut off by the velocity-
length ξv. This later result is due to the confinement
of the elastic distortion (that in a stationary vortex is
uniformly azimuthally distributed) to a comet-tail wake
of a moving vortex.

Vortex interaction: To further characterize the nature
of moving vortices I study vortex-antivortex interaction,
that strongly depends on their velocities and orientation
relative to the initial separation vector, r‖ = r+ − r−.

Motivated by the vortex-pair annihilation dynamics, I
first compute the energy Ev,−v(r‖) = K

2

∫
d2r|∇θv,−v|2

of a vortex-antivortex pair moving toward each other
with velocity ±v = ±vr̂ along the separation vec-
tor r‖. In steady-state the solution is given by
θv,−v(r, t) = θ+s (r− r+−vt) + θ+v (r− r+−vt) + θ−s (r−
r−+vt)+θ−v (r−r−+vt), with singular (v) and smooth (s)
components for vortex (at r+) and antivortex (at r−), re-
spectively. The corresponding elastic energy Ev,−v(r‖) =

K
∫
d2k
k2

[
1− eik·r‖(t) + (k2k2v − (kv · k)2)

(
1

k4+(kv·k)2

+ e
ik·r‖(t)

(k2−ikv·k)2

)]
, is given by
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Ev,−v(r‖) ≈ 2πK

[
L

ξv
+ ln

ξv
a
− sinh−1

ξv
r‖

]
≈ 2πK

{
L/ξv + ln(ξv/a)− ξv/r‖, a� ξv � r‖,
L/ξv + ln(r‖/a), a� r‖ � ξv,

(13)

where r‖(t) = r+ − r− − 2vt and above I evaluated the
asymptotic r‖ dependence using an approximate hard
cutoff ξv/r‖ on low k. Even for coinciding vortex-
antivortex positions a linear in system size contribution
L/ξv remains due to elastic energy associated with the
comet tail of each moving vortex (see Fig.(2)). Subtract-
ing this constant self-energy piece I obtain the vortex-

antivortex interaction, U
‖
v,−v(r‖) advertised in (4), that

is qualitatively weaker and shorter range, falling off as
1/r‖ at large separations, r‖ � ξv.

Before moving on, I stress that a full vortex annihi-
lation problem is far richer, requiring analysis of a full
transient dynamics as vortices accelerate from rest, with
their velocity-length ξv(t) evolving nontrivially and tails

limited by the “causal horizon”, growing with t from be-
low to beyond their separation, r‖(t). Consequently, the

nature of the interaction U
‖
v,−v(r‖, ξv) is nontrivially ve-

locity dependent. I analyze the associated dynamics of
r(t) below.

Another geometry of interest is a co-moving vortex-
antivortex pair (see Fig.1), with the velocity v perpen-
dicular to the separation vector r⊥ = r+ − r−. In
steady-state, the solution θv,v(r, t) = θ+s (r− r+ − vt) +
θ+v (r − r+ − vt) + θ−s (r − r− − vt) + θ−v (r − r− − vt)
leads to the elastic energy Ev,v(r⊥) = K

2

∫
d2r|∇θv,v|2 =

K
∫
d2k

k2+k2v
k4+(kv·k)2

(
1− eik·r⊥

)
given by

Ev,v(r⊥) ≈ 2πK

[
ln
ξv
a
− sinh−1

ξv
r⊥

+
√
r2⊥/ξ

2
v + 1

]
≈ 2πK

{
r⊥/ξv + ln(ξv/a), a� ξv � r⊥,
ln(r⊥/a), a� r⊥ � ξv,

(14)

evaluated in the same hard cutoff approximation as in
(13), and giving U⊥v,v(r⊥) advertised in (5). This is a
striking result as it predicts for r⊥ > ξv a linear con-
finement of a moving vortex-antivortex pair, replacing
logarithmic potential for a stationary pair. As is clear
from Fig.(1) this elastic energy is associated with the r⊥
length of the non-overlapping parts of the “comet” tails,
the rest, beyond r⊥ parts canceling between co-moving
vortex and antivortex.

Vortex-antivortex annihilation dynamics, approxi-
mately described (neglecting[12] transients in (10)) by

γvdr/dt = −∂U−v,v(r,v)
∂r = − 2πK

r
1√

r2/ξ2v+1
,

˙̂r ln(| ˙̂r|/2) =
1

r̂

1√
r̂2 ˙̂r2 + 1

(15)

is significantly enriched[12] by the velocity-dependent
mobility (2) and interaction (4), as compared to the naive
dynamics γdr/dt = −K/r, that predicts a vortex sepa-
ration r(t) =

√
r20 − (2K/γ)t, initially separated by r0,

annihilating in time t0 = r20γ/(2K).[1]. Above r̂ and
t̂ are respectively measured in the microscopic units of
a and ta = a2γ/(2K). Equation (15) predicts in units

of va = a/t0 that r̂v̂ = 1√
2

(√
1 + 4/ ln2(v̂/2)− 1

)1/2

(rather than r̂v̂ = const. of the naive dynamics) and
can be solved numerically, with the result illustrated in

Fig.(4). It shows a significant modification and slowing
of the dynamics by the effects studied here.

Beyond the transient time ξv/v, the enriched dynamics
is expected only in the regime of large separation and
high velocity rv � ava = K/γ, corresponding to r �
ξv. Using K/γ ≈ 10−5 cm2/sec and v = 1µm/sec I
estimate ξv ≈ 1mm and va ≈ 1mm/sec for a ≈ 1µm,
a limited regime of current experiment’s[1] applicability.
Also, above prediction for the product rv decreasing with
r is inconsistent with measurements[1]. Thus, I conclude
that in current vortex annihilation experiments, the high
velocity effects studied here are not sufficient to account
for the observed anomalies[1] and other effects[12] may
need to be considered. Further systematic experiments
on moving vortices would be highly desirable to sort out
various contributions.

I also leave the extension of the present London
limit analysis to a superfluid, beyond a linearized XY
model treatment[13], incorporating the full Galilean
invariance[14] for a future study.
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