aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anomalous Energetics and Dynamics of Moving Vortices
Leo Radzihovsky

Phys. Rev. Lett. 115, 247801 — Published 8 December 2015
DOI: 10.1103/PhysRevlLett.115.247801


http://dx.doi.org/10.1103/PhysRevLett.115.247801

Anomalous energetics and dynamics of moving vortices

Leo Radzihovsky
Department of Physics, University of Colorado, Boulder, CO 80309
(Dated: November 2, 2015)

Motivated by the general problem of moving topological defects in an otherwise ordered state and
specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening
experiments in freely-suspended smectic-C films[1], I study the deformation, energetics and dynamics
of moving vortices in an overdamped XY model and show that their properties are significantly and

qualitatively modified by the motion.

PACS numbers:

Introduction: Topological defects play a central role in
phase transitions, relaxation of generalized strain (e.g.,
current dissipation in a superfluid, strain relaxation in
a crystalline solid, etc.)[2], coarsening dynamics after a
quench into an ordered state[3]. They appear in a broad
range of physical realizations from superfluids and liquid
crystals[4] to early universe baryogenesis[5].

Many physical systems involve topological defects mov-
ing (stochastically or deterministically) through an oth-
erwise ordered medium. Although it is usually tacitly
assumed that defect’s properties (texture structure, in-
teraction, dynamics, etc) are not modified by its motion,
with the center ry simply boosted ro — ro(t) by the mo-
tion, there is no a priori reason for this to be the case.
Instead, not unlike a relativistic charged particle, a mov-
ing defect is defined and governed by the dynamics of
the associated vector field, requiring a nontrivial analysis
that is the subject of this Letter.

Stimulated by this general question, and by the
anomalous vortex-antivortex annihilation and coarsening
dynamics[3] observed in freely-suspended smectic-C films
experiments|[1, 6, 7], I explored the nature of moving vor-
tices in an overdamped two-dimensional (2D) XY model,
applicable to a broad range of soft matter systems. In
this Letter I report the results of these studies. With
some modifications these may also extend to vortices in
a nonzero-temperature superfluid and superconductor in
the presence of a background supercurrent or dislocations
in a strained crystal.

Results: Before turning to the analysis, I summarize
the results of this study. I find that a vortex imposed to
move with a constant velocity v in an ordered medium of
stiffness K and damping 7, beyond a length scale

K _ _ -1

&= —=Djv=k; (1
exhibits a nontrivial longitudinal distortion of its stan-
dard, purely transverse form[4], latter retained on length
scale below &,,. In the steady state the resulting deformed
vortex exhibits a parabolic comet-like tail, extending
across the system to which most of the 27 phase winding
is confined (see Figs.1,2). While a motion-induced distor-
tion is not surprising, its long-range nature and qualita-
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FIG. 1: A vector field corresponding to a phase 0(r) for a
vortex-antivortex pair co-moving to the right with velocity v.
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FIG. 2: A vortex-antivortex counterpropagating pair relevant
to the annihilation problem. The motion-induced comet-like
tails (that lead to a linearly diverging vortex elastic energy)
and a suppression of the deformation between vortices (that
leads to a weakened interaction) are clearly visible.

tive consequences (see below) indeed are. For a transient
state at time t after a vortex begins to move, the steady-
state distortion only extends out to a time-dependent
anisotropic “horizon” vt x /Kt/v, beyond which the
purely transverse vortex field is nearly undistorted by
the motion. This is analogous to the Lienard-Wiechert
potential of a moving point charge[9]. All other predic-
tions follow from this result. Specifically, a £27 vortex
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FIG. 3: A transient vector field of a vortex moving for time ¢,
exhibiting a steady-state distortion out to an elliptical “hori-
zon” vt X /Kt/v, and purely transverse vortex field beyond.

steady-state mobility

1
myIn(2€,/a)

vanishes logarithmically with vanishing velocity, &, cut-
ting off the In L/a divergence of a stationary vortex drag
coeflicient, a result that was previously found via scal-
ing and numerical analysis in earlier studies[2, 3, 10, 11]
(a is the vortex core size). Thus, a 2D vortex exhibits
a breakdown of a linear response to an external force
f, with a truly nonlinear velocity-force characteristics
o(f) ~ f/|n fl.

The “comet tail” texture of a moving +27 vortex leads
to an elastic energy that diverges linearly with system
size

o ~1/|Inol (2)

E, = 7K (L/& +1n&,/a), (3)

with the usual logarithm cut off by the length &, ~ 1/v,
that diverges with a vanishing velocity. The interaction
between two £27 moving vortices strongly depends on
their velocities and orientation relative to the separation
vector, r. With the eye on the problems of a vortex-
antivortex annihilation and nucleation by an imposed
strain, I find the interaction potential U‘l,ly_v(r), for a
vortex and antivortex moving toward each other, v || r
(Fig.2):

U‘l,‘,_v(r) = 271K [c - sinh_l(fv/T)] ) (4)
~ C—EU/T,G<<£'U<<T’
~ 27TK{1HT,/Q, a<Lr L&,

and a potential U‘J,-’v(r) for a pair co-moving with velocity
v L r (Fig.1):

Udor) = 20K [c—sinh™ (&,/r) + /[ 1], (5)

o K c+r/é, a <K€ L,
Inr/a, a<<r<Eé,,
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with ¢ = In&,/a. Thus, in the annihilation configura-
tion (Fig.2), vortex attraction for separation beyond &,

is suppressed by the motion. Conversely and even more
dramatically, T predict that vortex pair motion in the
transverse configuration (Fig.1) leads to a linear confine-
ment on long length and time scales.

The above velocity-dependent vortex mobility and in-
teraction qualitatively modify the equation of motion
for the vortex-antivortex separation. This leads to a
late-time slowed annihilation dynamics that may be an
important ingredient in the anomalies observed in the
experiments|1].

Analysis: With the above motivation in mind, I now
turn to the analysis of moving £27 vortices in a 2D over-
damped XY model (in the isotropic approximation the
generalization to higher vortex charge is straightforward)

70,0 = KV?0, with V x V6 =218(r —r,(t))z, (6)

searching for a vortex solution 6(r,t), that for simplic-
ity I take to be moving at constant velocity defined by
r,(t) = vt. Despite ignoring a number of ingredients[12],
T expect it to be a core description of many systems where
damping is dominant.

To this end, I take the solution to be 6(r,t) = 6,(r —
vt) 4 0,(r,t), where 0,(r) = ¢ = arctan(y/x) is the az-
imuthal polar angle that is the standard purely transverse
solution of the static problem (y = 0), that enforces a
moving unit of vorticity. The 64(r,t) part is a nonsin-
gular, single-valued function (with a purely longitudinal,
curl-free gradient) determined by the requirement that
O(r,t) satisfies the equation of motion (6). Thus 0(r,t)
describes the distortion of a moving vortex about the sta-
tionary form 6(r) = ¢, with its spatial Fourier transform
satisfying

0:0s(k) + Kk20,(k) = v - Vo, (k)e ™. (7)

The exact solution is easily found either directly for
0s(r,t) or by first Galilean-transforming to the moving
vortex frame r' = r — vt, 9y — O0; + v - Vv, where the
distortion is €, (r',t) = 05(r’ + vi, t).

For a vortex that has been moving forever the Fourier
transform of the steady state distortion (vanishing for
v =0) is given by

v -Vo,(k)  —2mik,-zxk
Kk?2 —iyv-k  k2(k2 — ik, - k)’

0 (k) = (8)

where k, = yv/K. This leads to the “elastic” energy
spectrum, |VO(k)|? = 472 (k? + k2)/[(k, - k)? + k%], that,
on length scales beyond ¢, (k < k) is highly anisotropic,
akin to that of a smectic liquid crystal. On shorter length
scales it reduces to that of an isotropic stationary (undis-
torted) vortex[4].

In real space the steady-state distortion for a 27w-vortex



moving along the x-axis, in the vortex frame is given by

* dg e~ %l sin g
0. ~ — i —— L 9
o) ~ - [ )
> dq e~ 9%l sin ¢ N
20 [ WETIIM [y e
o ¢ ¢*-1

where & = z/€,, § = y/&, and O(x) is the Heaviside
step function. Evaluating above integrals numerically
and adding the singular part of the vortex, 6,(r) = ¢,
gives the real-space vector fields illustrated in Figs. 1, 2.
A transient-state field of a vortex that has been mov-
ing for time t (particularly relevant for the annihilation
problem) can also be computed exactly and is given by

1— 67%(k27ik0-k)t

) = [ v V8,00 e (10)

Its key generic features are controlled by three length
scales &,, {1 = /Kt/y, { = vt. At time t > t, =&, /v,
such that §, < £ < |, one can see from the solution
(10) that on scales shorter than an anisotropic domain
&) X €., the solution reduces to the “comet-tail” steady-
state one, (9) (Figs. 1, 2). On longer scales the vortex
distortion reduces to 6.(r,t) = vt - VO,(r’), which when
combined with the singular part gives

0 (v',t) = 0,(r") + vt - VO,(x") = 0, +vot) = . (11)
Thus on scales outside of the vt x y/Kt/v domain the
vortex field reduces to that of an undistorted stationary
vortex 0(r,t) = p at its initial, ¢ = 0 position (see Fig.3).
This is a diffusive vortex analog of a “causal horizon” be-
yond which the distortion associated with a moving vor-
tex had not had sufficient time to propagate out. Other
results (e.g., a vanishing vortex mobility, vortex energy
and interaction between moving vortices) follow directly
from the above moving vortex solution.

Vortex mobility: In the steady-state the power input
by the external force F to drive the vortex at velocity
v is balanced by the rotational power dissipated, P, =
J.(00)(KV?0) = [ 4(8,0)* = ~yv* [ (0.0)%, gives the
vortex drag coefficient, v, = p~! (inverse mobility)[2,
10, 11]:
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Thus, at finite velocity, a previously noted divergence
with system size L or vortex separation r [3, 6, 7] is cutoff

by the velocity-length &, ~ 1/v, thereby displaying a
nonlinear velocity-force characteristics i.e., an absence of
linear response down to a vanishing force.

Vortex energy: It is of interest to calculate the elastic
energy F, = % [ d*r|V0)|? stored in a moving vortex. In
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FIG. 4: Vortex-antivortex separation 7(¢) as a function of
time, a solution of (15) (solid), is significantly slowed down

compared to the “naive” dynamics v, dr/dt = —K/r (dashed).

steady-state, using (8) I find:

By =K (VL/&) +1 +1n(& /o) — sinh ™" (€,/L))

that for vanishing velocity, L < &, reduces to InL/a
of a stationary vortex, but for a rapidly moving vortex,
L > &, gives the energy (3), that diverges linearly with L
and with the standard logarithm cut off by the velocity-
length &,. This later result is due to the confinement
of the elastic distortion (that in a stationary vortex is
uniformly azimuthally distributed) to a comet-tail wake
of a moving vortex.

Vortex interaction: To further characterize the nature
of moving vortices I study vortex-antivortex interaction,
that strongly depends on their velocities and orientation
relative to the initial separation vector, rjy =ry —r_.

Motivated by the vortex-pair annihilation dynamics, I
first compute the energy Ey (1)) = % [ d*r|Voy _y|?
of a vortex-antivortex pair moving toward each other
with velocity £v = Zwor along the separation vec-
tor ry. In steady-state the solution is given by
Oy _v(r,t) =0 (r—ry —vt)+ 0 (r —ry —vt)+ 65 (r—
r_+vt)+0, (r—r_+vt), with singular (v) and smooth (s)
components for vortex (at r) and antivortex (at r_), re-

spectively. The corresponding elastic energy Ey (1)) =
K [ 4 [1 — ™ 4 (k%KD — (k, - k)?) (W
R0

+m)} , is given by
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where r|(t) = ry —r_ — 2vt and above I evaluated the
asymptotic 7 dependence using an approximate hard
cutoff &,/r) on low k. Even for coinciding vortex-
antivortex positions a linear in system size contribution
L/¢, remains due to elastic energy associated with the
comet tail of each moving vortex (see Fig.(2)). Subtract-
ing this constant self-energy piece I obtain the vortex-
antivortex interaction, U‘l,‘v_v(T”) advertised in (4), that
is qualitatively weaker and shorter range, falling off as
1/7°H at large separations, 7| > &,.

Before moving on, I stress that a full vortex annihi-
lation problem is far richer, requiring analysis of a full
transient dynamics as vortices accelerate from rest, with
their velocity-length &,(¢) evolving nontrivially and tails

J

L/gv + hl(gv/a) - &,/TH, a <K 51) < Il

L/é, +In(r /a), a<n <& )

(

limited by the “causal horizon”, growing with ¢ from be-
low to beyond their separation, r| (). Consequently, the

nature of the interaction U“,l,fv(rufv) is nontrivially ve-
locity dependent. I analyze the associated dynamics of
r(t) below.

Another geometry of interest is a co-moving vortex-
antivortex pair (see Fig.1), with the velocity v perpen-
dicular to the separation vector r; = ry —r_. In
steady-state, the solution 0y (r,t) = 6F(r —ry — vt) +
Of(r—ry —vt)+ 60, (r —r_ —vt)+ 0, (r —r_ — vt)
leads to the elastic energy Ey v (1) = % [ d*r|Vo, | =

dezk% (1 — e L) given by

E”m)z%Km%mwfﬁmwmﬁqzmm{“m+MW%“<@<“’ (14)

evaluated in the same hard cutoff approximation as in
(13), and giving Uj:v(rL) advertised in (5). This is a
striking result as it predicts for r; > &, a linear con-
finement of a moving vortex-antivortex pair, replacing
logarithmic potential for a stationary pair. As is clear
from Fig.(1) this elastic energy is associated with the r
length of the non-overlapping parts of the “comet” tails,
the rest, beyond r, parts canceling between co-moving
vortex and antivortex.

Vortex-antivortex annihilation dynamics, approxi-
mately described (neglecting[12] transients in (10)) by
Yodrfdt = — Pt = 2
1

V22 4 1

is significantly enriched[12] by the velocity-dependent
mobility (2) and interaction (4), as compared to the naive
dynamics ydr/dt = —K/r, that predicts a vortex sepa-
ration r(t) = /73 — (2K/7)t, initially separated by ro,
annihilating in time tq = r3y/(2K).[1]. Above 7 and
t are respectively measured in the microscopic units of
a and t, = a?y/(2K). Equation (15) predicts in units

1/2
of v, = a/ty that 70 = % ( 1+4/ln2(ﬁ/2) — 1)

(rather than 70 = const. of the naive dynamics) and
can be solved numerically, with the result illustrated in

rIn(|F]/2) =

<5 =

(15)

In(r./a), a < <&,

(

Fig.(4). It shows a significant modification and slowing
of the dynamics by the effects studied here.

Beyond the transient time &, /v, the enriched dynamics
is expected only in the regime of large separation and
high velocity rv > av, = K/, corresponding to r >
&,. Using K/y ~ 1075 cm?/sec and v = lum/sec I
estimate &, ~ lmm and v, = lmm/sec for a ~ lum,
a limited regime of current experiment’s[1] applicability.
Also, above prediction for the product rv decreasing with
r is inconsistent with measurements[1]. Thus, I conclude
that in current vortex annihilation experiments, the high
velocity effects studied here are not sufficient to account
for the observed anomalies[1] and other effects[12] may
need to be considered. Further systematic experiments
on moving vortices would be highly desirable to sort out
various contributions.

I also leave the extension of the present London
limit analysis to a superfluid, beyond a linearized XY
model treatment[13], incorporating the full Galilean
invariance[14] for a future study.
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