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We expand the well-known notion, that quantum criticality can induce superconductivity, by
proposing a concrete mechanism for superconductivity due to quantum ferroelectric fluctuations. To
this end, we investigate the origin of superconductivity in doped SrTiO3 (STO) using a combination
of density functional and strong coupling theories within the framework of quantum criticality. Our
density functional calculations of the ferroelectric soft mode frequency as a function of doping reveal
a crossover related to quantum paraelectricity at a doping level coincident with the experimentally
observed top of the superconducting dome. Thus, we suggest a model in which the soft mode
fluctuations provide the pairing interaction for superconductivity carriers. Within our model, the
low doping limit of the superconducting dome is explained by the emergence of the Fermi surface,
and the high doping limit by departure from the quantum critical regime. We predict that the
highest critical temperature will increase and shift to lower carrier doping with increasing 18O
isotope substitution, a scenario that is experimentally verifiable. Our model is applicable to other
quantum paraelectrics, such as KTaO3.

Strontium titanate (STO) is a cubic perovskite with
the ideal prototype structure at room temperature and
a tetragonal structure below ∼100K due to symmetry-
lowering antiferrodistortive (AFD) rotations of the TiO6

octahedra [1]. It is characterized by a number of remark-
able properties. It was the first superconducting oxide
to be discovered [2] and shows a dome as a function of
doping, similar to that of the high-Tc cuprates[3], but
with its maximum transition temperature at Tc ' 0.4K.
Early tunneling measurements [4] and subsequent experi-
ments [5] suggested an unusual two-band superconductiv-
ity, consistent with the closely spaced lowest conduction
bands at the center of the Brillouin zone. In addition, the
onset of superconductivity has been shown to occur at
remarkably low carrier concentrations of 1018e/cm3 [5].
Despite a long-running interest in its origin [3], a com-
plete theoretical account of the superconducting dome
remains elusive, and many aspects of superconductivity
in STO remain a puzzle.

The dielectric behavior of STO is also unusual. The di-
electric constant is strongly temperature dependent, and
diverges at low temperature in a manner characteristic of
a ferroelectric phase transition [6].In fully oxidised sam-
ples the square of the polar TO mode frequency decreases
linearly with decreasing temperature and when extrap-
olated should become imaginary at finite temperature,
indicative of a ferroelectric instability [7] at low tem-
perature. Rather than manifesting ferroelectric behav-
ior, however, STO is a so-called quantum paraelectric,
in which quantum fluctuations at zero temperature sup-
press the transition to the ferroelectric state [6] as is also
manifested by a leveling off of the TO mode at a real
frequency at low temperature [7]. The quantum para-
electric state is characterized by low energy excitations
and large ferroelectric fluctuations [8], and it has been

speculated that these might be relevant for the super-
conductivity [9, 10]. Indeed, early descriptions [3, 11]
of the superconducting dome in STO were based on the
effects of screening of the interaction between electrons
and the optical phonons responsible for the large dielec-
tric response. Because heavier 18O atoms suppress the
quantum fluctuations, STO develops ferroelectric order
on isotope substitution of 16O with 18O [12–14], and the
composition with 35% 18O substitution was recently re-
ported to be a ferroelectric quantum critical point (QCP)
[15].

We present a model in which these two features – prox-
imity to the ferroelectric QCP and the unusual supercon-
ducting properties – are intimately related, and the su-
perconducting dome emerges as a result of the quantum
critical ferroelectric fluctuations. A connection between
the formation of a superconducting dome and quantum
criticality has been extensively discussed in the context of
unconventional superconductivity, both in heavy fermion
materials and in the cuprates [16–18]. It is proposed that
competing phases close to the quantum critical point lead
to low energy excitations such that any residual interac-
tions drive the system to a new, possibly superconduct-
ing phase. In heavy fermion materials and the cuprates a
magnetic quantum critical point with associated spin ex-
citations has been invoked to explain superconductivity.
In STO the elementary excitations associated with the
ferroelectric quantum critical point are optical phonon
modes. As a result we expect differences in the na-
ture of the superconducting order: Magnetic fluctuations
typically produce unconventional superconducting order
such as d-wave singlets for antiferromagnetic fluctuations
[19, 20] or p-wave triplet states for ferromagnetic fluc-
tuations [21]. The ferroelectric fluctuations in STO, in
contrast, involve q = 0 phonon modes and as such are
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FIG. 1. Literature values of the superconducting critical tem-
perature [3] (circles) and calculated frequencies (this work) of
the ferroelectric modes parallel- (‖) and perpendicular (⊥) to
the axis of the AFD rotations (red solid and dashed lines) as
a function of the carrier concentration. The imaginary fre-
quencies obtained at low doping indicate negative restoring
forces corresponding to ferroelectric instabilities; as the car-
rier concentration is increased the ferroelectric mode hardens
and its phonon frequency becomes real. The inset shows the
calculated energy as a function of ferroelectric mode ampli-
tude for various doping levels, illustrating the crossover from
the classic ferroelectric double well potential energy to a sin-
gle well, indicating a paraelectric ground state on increasing
doping. As the charge carrier concentration is increased, Tc

first increases and then decreases, forming the characteristic
superconducting dome. We see that the doping concentration
at which Tc drops to zero, ∼ 1020e/cm3, closely matches that
at which the ferroelectric mode hardens.

candidates for pairing interactions that introduce con-
ventional s-wave superconducting order, as observed in
experiments [22].

Our model is motivated by our density functional the-
ory (DFT) calculations of the zone-center (q = 0) soft-
mode optical phonon frequency as a function of electron
doping, which shows an intriguing correlation with ex-
perimental measurements of the superconducting dome.
This ferroelectric soft mode with opposite Sr and Ti
cation and O anion displacements (for details, see Ref.
23), has a calculated imaginary frequency at zero doping,
indicating the presence of a ferroelectric instability. The
calculated potential energy as a function of the relative
position of anions and cations (see supplementary mate-
rial [24] Sec. I for details) shows the characteristic double
well form, with the two minima corresponding to ferro-
electric structural ground states with opposite polariza-

tions. In practice, quantum fluctuations between the two
wells suppress the ferroelectricity in STO, and give it its
quantum paraelectric behavior. In Fig. 1 we show how,
on electron doping, the modulus of the mode frequency
decreases, corresponding to a weakening of the ferroelec-
tric instability, and the frequency eventually becomes real
– signaling a single high-symmetry energy minimum (in-
set to Fig. 1) – at a doping concentration of ∼ 1020 cm−3,
which is in agreement with experimental data [7]. Since
there is now only one minimum of the potential well,
there are clearly no quantum fluctuations between equiv-
alent states. At the same doping level, the experimen-
tally measured superconducting transition temperature
starts to reduce [3]. Since soft modes are characteris-
tic of quantum criticality [25], we propose therefore the
following model for the superconducting dome in STO:
First, superconductivity is favored when the quantum
fluctuations favored by the soft anharmonic lattice modes
increase the superconducting coupling constant λ [26] .
However, these are strongest at low doping, where there
are insufficient carriers to provide robust superconduc-
tivity. Increasing the doping level has the side-effect of
reducing λ, which in turn determines the upper bound of
the superconducting dome.

To test this hypothesis we propose isotopic substitu-
tion of 16O with 18O, which lowers the energies of the
zero-point energy levels in the two minima and reduces
the probability of tunneling between them eventually fa-
voring a ferroelectric ground state, see Fig. 2b. We know
that at zero carrier doping, the paraelectric to ferroelec-
tric transition occurs at about 35% 18O substitution and
is a quantum critical point[15]. In addition, our DFT
calculations tell us that doping suppresses FE, and so
the QCP should move to higher 18O fractions as doping
is increased, implying the existence of a quantum criti-
cal line (QCL). This allows us to construct the schematic
phase diagram in Fig. 2. Our DFT calculations give an
upper bound for this QCL, which is the doping level at
which the frequency of the FE mode becomes real and
the quantum fluctuations are completely suppressed; in
practice this represents the limit of infinitely heavy oxy-
gen atoms and the actual critical transition will occur
at much lower doping. Note that, at least at low 18O
concentration, charge carriers only appear as one moves
away from the quantum critical point, so the QCP is in
fact located outside the superconducting dome. This is in
contrast to the emergence of superconductivity in other
systems close to a QCP, such as the cuprate supercon-
ductors, in which the dome is approximately centered on
the QCP. In those cases, the QCP occurs at substantial
doping, where charge carriers are already available.

We quantify our proposed model by calculating Tc, as-
suming the scenario of soft critical modes in the limit
of low doping. We first write a quantum model for the
ferroelectric phase transition which yields a spectrum for
the FE phonons. Then, we calculate the superconducting
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FIG. 2. a) Schematic phase diagram of STO as a function
of carrier doping and isotope replacement. The orange cir-
cles mark the experimentally measured transition to super-
conductivity, as observed in Ref. 3. The blue circles are the
measured transition temperatures [14] from the paraelectric
(PE) to the ferroelectric (FE) phase as a function of 18O iso-
tope substitution. Our DFT calculations suggest that the
ferroelectric phase penetrates slightly into the non-zero dop-
ing regime, but then quickly disappears as doping suppresses
ferroelectricity, although no experimental data for this tran-
sition line is available. The maximal value of doping at which
the ferroelectric phase persists is labeled as n∗. Although we
have no precise calculation for n∗, its value should lie in the
range 1019 < n∗ < 1020. b) Schematic illustration for the
lowering of the lowest energy levels (dashed red lines) in the
double well potential (black solid line) as f18 is increased.

coupling constant, using the McMillan formula [27].

We use the order-disorder approach [28, 29] to model
the ferroelectric fluctuations of the modes shown in
Fig. 1.We assume that these modes have Ising charac-
ter. By analogy with magnetic phase transitions, the
transverse Ising model

H = Γ
∑
i

σx(i)−
∑
i,j

Ji,jσz(i)σz(j) (1)

can be used to describe the FE transition [8]. Here σx,z(i)
are the Pauli matrices for site i, Γ/~ is the onsite tunnel-
ing rate, Ji,j is the inter-site coupling, given by the energy
difference between two cells with their dipoles aligned
parallel or anti-parallel to each other, and the eigenstates
of σz represent the state of the system in one of the
two wells. The quantum phase transition occurs when
Γ ∼

∑
j J0,j [8]. Our DFT study shows that doping the

system will reduce the barrier and thus increase Γ. The
excitations of (1), in the paraelectric phase Γ >

∑
j J0,j ,

are given by [8]

ω2
q = 4Γ (Γ− 〈σx〉Jq) (2)

where Jq =
∑
j J0,je

iRjq is the Fourier transform of the
coupling and 〈σx〉 ∼ 1 is the average of σx(i). In our
analysis we consider only nearest-neighbor coupling for
simplicity. Long range interactions make the calculation
more intricate but do not yield any qualitative changes.
Furthermore, since the antiferrodistortive rotations of the
TiO6 octahedra render the lattice highly anisotropic, we
treat the system as one dimensional. Thus, we write the
coupling as Jq = 2J cos(q), where J is a constant and q is
the wave number in the direction of the largest coupling.

When the system is close to the phase transition it be-
comes gapless as the lowest excitation softens, ωq=0 → 0
(see supplementary material [24] Sec. II)). This is accom-
panied a large susceptibility and an enhanced electron-
phonon coupling. To quantify this idea we calculate the
dependence of Tc on the phononic spectrum using the
formalism of Eliashberg strong-coupling theory. The cou-
pling constant for superconductivity is given by [27]

λ =

∫ ∞
0

α2(ω)F (ω)
dω

ω
(3)

where α(ω) is the electron-phonon coupling, which we
assume to be the constant α, and F (ω) is the spectral
density of the phonons. In the limit of a van Hove singu-
larity at q = 0, so that F (ω) ∼ δ(ω − ω0), this yields

λ = α2 1

ωq=0(f18, EF )
, (4)

which already captures the main physical picture of soft-
mode enhanced superconductivity. The full solution is
obtained by inserting F (ω) =

∫
dqδ(ω−ωq) into (3) and

transforming it to an integral over q: λ =
∫
α2 dq

ωq
, where

ωq is given by (2). One then obtains

λ ∼
∫ π

−π

dq

2Γ
√

1− 2J cos(q)/Γ
. (5)

The critical temperature can then be obtained by com-
bining this coupling constant, which was calculated using
strong coupling theory, with the standard expression (see
for example Ref. 30)

1 =
λ

2π2

∫ 0

−EF

dεN(ε)
tanh (ε/2Tc)

ε
(6)

where ε is the energy relative to the Fermi energy, EF ,
and N(ε) is the density of states. The lower limit of the
integral is set by N(ε) = 0 at and below the bottom of
the band where ε < −EF . The upper limit is set by
the Fermi level, where we define ε = 0. Since in the low
doping scenario that we consider here the relevant energy
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FIG. 3. Calculated Tc as a function of doping level for several
fractions of isotope replacement, f18. The blue diamonds are
experimental results taken from Ref. [3]. Replacing 16O with
18O moves the QCP closer to the doping range relevant for
superconductivity and causes a significant enhancement in Tc.
we use the parameters A = 0.4, B = 10−6 K−2, C = 2.5 ×
10−3 K−1, D = 95 K1/2, as defined in the main text.

range is close to the bottom of the band, we can assume
that N(ε) ∼

√
ε+ EF close to ε = −EF . Using x = ε/Tc

equation (6) then becomes

D

λ
=

√
Tc

∫ 0

−EF /Tc

dx
√
x+ EF /Tc

tanh(x/2)

x
, (7)

where D is a constant of proportionality. Note that Tc
has a double dependence on EF : one directly from the
limit of the integral in (7) and the other from the de-
pendence of λ on the tunneling rate Γ on EF through its
dependence on the carrier concentration.

Before we can solve Eq. 7 numerically to obtain Tc as
a function of EF , we need the explicit dependence of the
parameters of our model (1) on doping and isotope re-
placement. The quantity with the largest quantitative
influence is the ratio Γ/2J , which is equal to one on the
QCL. For simplicity we set 2J = 1 and consider only
the dependence of Γ. As discussed above, carrier dop-
ing decreases the barrier between the two wells and thus
increases the tunneling energy Γ. This effect starts at
low doping and becomes very strong around carrier con-
centrations of 1020e/cm3, best described by both a lin-
ear and quadratic dependence on EF . 18O replacement
on the other hand should decrease Γ approximately lin-
early as the zero-point energy levels shift deeper into the
wells. Furthermore, we require that at zero doping and
35% 18O substitution, which is the known QCP, Γ should
equal unity. The following form captures these facts and
is therefore sensibly used in our calculations

Γ = 1−A(f18 − 0.35) +BE2
F + CEF , (8)

where f18 is the 18O fraction and the constants A, B,
and C are chosen so that the calculated Tc for f18 = 0

matches the experimental value. We then use the ex-
pression Γ from Eq. (8) and insert this into Eq. (7) to
calculate Tc.

In Fig. 3 we plot our calculated Tc as a function of the
Fermi energy (converted to carrier concentration) for var-
ious values of f18. Two features are clear from the plot:
i), we find a significant enhancement of Tc with increased
18O content, reflecting the fact that the isotope substi-
tuted system is closer to the QCP. ii), we find that the
peak of the superconducting dome shifts to lower carrier
concentrations, since the enhancement of λ and thus Tc is
strongest close to the QCP, as can be seen from Eq. (3).
We note that, even when f18 exceeds 0.35, doping quickly
reduces the depth of the double wells, allowing quantum
fluctuations to return STO to the quantum paraelectric
state. Thus, apart from the limit of very low doping,
all systems we consider have paraelectric, not ferroelec-
tric ground states. In our mechanism for superconduc-
tivity in STO, increasing the atomic mass leads to an
increase of the critical temperature. That is dTc

df18
/Tc > 0

(for details, see supplementary material [24] Sec. III).
This differs profoundly from the well-known isotope ef-
fect in BCS superconductors, in which ∆Tc

Tc
= − 1

2
∆M
M

[31], where M is the mass of the atoms. This arises from
the dependence of Tc on the Debye frequency.

We have provided a description of the superconduct-
ing dome in STO in which the QCP at zero doping pro-
vides low energy soft phonon excitations, which lead to
a large coupling constant. Increasing the doping pro-
vides carriers for superconductivity but reduces the fer-
roelectric quantum fluctuations and decreases the cou-
pling constant, eventually suppressing the superconduc-
tivity and limiting the top of the superconducting dome.
Since isotope substitution allows tuning of the QCP, our
model predicts a large and unusual isotope effect on Tc,
see Fig. 3, which should be experimentally observable.
The understanding of the competition between carrier
concentration and proximity to a QCP developed here
provides a new design guideline in the search for novel
superconducting compounds and suggests a route to en-
gineering materials with higher Tcs through tuning the
location of their QCP.

Since the original submission of this work another
closely related paper has appeared [32].
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