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Abstract   Effects of particle inertia, particle shape, and fluid shear on particle rotation are examined using direct 
numerical simulation of turbulent channel flow. Particles at the channel center (nearly isotropic turbulence) and 
near the wall (highly sheared flow) show different rotation patterns, and surprisingly different effects of particle 
inertia. Oblate particles at the center tend to rotate orthogonally to their symmetry axes whereas prolate particles 
rotate around their symmetry axes. This trend is weakened by increasing inertia, so that highly-inertial oblate 
spheroids rotate nearly isotropically about their principle axes at the channel center. Near the walls, inertia does 
not move the rotation of spheroids towards isotropy, but rather reverses the trend, causing oblate spheroids to 
rotate strongly about their symmetry axes and prolate spheroids to rotate normal to their symmetry axes. The 
observed phenomena are mostly ascribed to preferential orientations of the spheroids. 

Aspherical particles are encountered in many natural and industrial processes: sediment transport in 
estuaries [1], ice crystals in the atmosphere [2-3], pulp fibers in papermaking [4] and planktonic and 
swimming microorganisms in the ocean [5-6].  Furthermore, all of these example particles have non-
negligible inertia, meaning that they do not instantly adjust to equilibrium with the dynamic behavior of 
the fluids in which they are embedded.   

Previous studies have revealed the dynamics of inertia-free aspherical particles in homogeneous 
isotropic turbulence [7-14]. These have shown particles to preferentially align with respect to fluid 
vorticity and/or strain, which causes particle rotation to differ from that of fluid parcels, even though 
the particles are non-inertial.  Specifically, rods tend to align their symmetry axis with the local fluid 
vorticity vector, which leads them to rotate preferentially around their symmetry axis [9].  Discs align 
one of their long axes with the local fluid vorticity, leading to minimal rotation about their symmetry 
axis.  In other words, “rods spin and discs tumble” [13].   

Inertial particles have been investigated in homogeneous isotropic turbulence [15, 16], and (more 
commonly) in turbulent channel flow [17-22].  Analysis has focused on particle clustering, turbophoresis, 
and particle motion. The analyses of particle motion in channel flow have been conducted entirely in the 
laboratory frame, and have not yet considered the interesting behavior that can be seen by examining 
particle motion with respect to their principle axes. 

These recent studies leave the following questions unanswered: To what extent will particle inertia 
affect the partition between tumbling and spinning in homogeneous isotropic turbulence? How does 
strong fluid shear change the tumbling and spinning? Does the tumbling and spinning of spheroids seen 
in isotropic turbulence also occur in the nearly-isotropic core region of a turbulent channel flow? Finally, 
do aspherical particles orient preferentially, and if so, where?  

In this Letter we therefore examine the motion of aspherical inertial particles in turbulent channel flow 
with respect to their local axes.  Channel flow allows us to examine the transition in behavior from 
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nearly isotropic turbulence at the channel center to highly-sheared anisotropic turbulence near the 
channel wall.  In this flow, we consider the combined effects of particle shape (from oblate to prolate) 
and particle inertia.  These results serve to extend and unite the hitherto disparate studies of channel 
flow and homogeneous isotropic turbulence.   

Direct Numerical Simulation (DNS) with a pseudospectral method was performed to simulate a 
turbulent channel flow closely matching that of Kim et al. [23].  The flow is periodic in streamwise (x) 
and cross-stream (y) directions, and has no-slip boundaries at the top and bottom walls.  Reynolds 

number based on wall friction velocity (uτ) and channel half-height (h) is 180 [18, 21].  We consider two 
regions of the flow: a region near the channel center (z+=180), where turbulence is nearly homogeneous 
and isotropic [24]; and a region near the channel wall (z+=10), which is in the buffer layer.  At this 
location, the flow has a strong mean shear, large values for the Reynolds shear stress -<uw>, and 
velocity fluctuation magnitudes are maximized. 

In the simulation, swarms of 500 000 non-interacting particles of each type are randomly injected into 

the fully developed turbulent channel flow at t+=0 (t+ is normalized by the wall-shear time scale νuτ
-2) 

and statistics are computed by averaging instantaneous data in homogeneous directions over a time 
window of 7200<t+<9000 for inertial spheroids and 720<t+<2520 for tracer spheroids.  Particle motion is 
computed using a one-way coupling scheme, in which Lagrangian particle paths in the Eulerian DNS field 
are determined using Newtonian mechanics.  Forces and torques acting on a spheroid are taken from 
Brenner [25] and Jeffery [26], respectively, who give expressions assuming steady flow in the creeping 
flow regime.  These drag-type forces are the only ones considered in the present study; gravity, added 
mass force and history force are considered second-order in importance. All particle dimensions are 
smaller than (or on the order of) the Kolmogorov lengthscale. The numerical methods and validation are 
described in [18] for prolate spheroids and [21] for oblate spheroids.   

Translational Stokes numbers (St) are derived based on a particle timescale (τ) that assumes isotropic 
particle orientation relative to the ambient flow [18, 21, 27]: 
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where D is the density ratio between particle and fluid and the aspect ratio λ = 2c/2a is the ratio 
between the symmetry axis (length 2c) and the two equal axes (length 2a). Particles are selected to 
sample a range of λ values, from 0.01 (oblate) to 50 (prolate).  For each λ value, three different particle 
densities are considered, in order to sample a range of translational Stokes numbers.  The Stokes 
numbers are set to zero, 0.074, and 2.222 (based on the Kolmogorov timescale τη at the channel 
centerline) or, equivalently, to zero, 1, and 30 (based on the channel wall-shear time scale).  
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Rotational Stokes numbers differ from the translational ones, because the timescale over which a 
particle reaches rotational equilibrium with the surrounding flow depends on the moment-of-inertia 
tensor. A first-order calculation of rotational response time can be made by considering a flow with zero 
fluid strain and using the steady-flow torque equations of Jeffery [26] to examine a particle approaching 
equilibrium with the local flow.  From this, we see that spheroids approach rotational equilibrium faster 
than they approach translational equilibrium, regardless of particle shape and which principle axis is 

being considered.  For example, given three spheroids with identical translational relaxation times τ that 
are coming to rotational equilibrium about their symmetry axis (z’), a prolate spheroid (aspect ratio 

λ=10) will come to rotational equilibrium in 0.13τ, a sphere (aspect ratio λ=1) in 0.3τ, and an oblate 

spheroid (aspect ratio λ=0.1) in 0.4τ.  

Let ωi and Ωi denote the angular velocity of a particle and a fluid element, respectively. We decompose 

the particle enstrophy (<ωiω i>) into “spin” and “tumbling” components, where spin describes only the 

rotation about a spheroid’s symmetry axis (z’) as <ω z’ω z’>, and tumbling describes rotation about the 

other two axes (x’ and y’) as <ω x’ω x’> + <ω y’ω y’>.  We observe from Fig. 1(a) that for St=0 particles at the 

channel center, oblate spheroids tumble more than prolate spheroids; this result is consistent with the 
previous findings in homogeneous isotropic turbulence [9-11, 13]. The other results in Figure 1 show 
that inertia reduces particle enstrophy and makes rotation more isotropic with respect to particles’ 
principle axes, i.e. weakening the tendency of discs to preferentially tumble and rods to preferentially 
spin. Figure 1(c) also shows that local fluid enstrophy decreases with increasing particle inertia, 
indicating that inertial spheroids preferentially sample regions of low fluid vorticity, in contrast to 
tracers which are distributed randomly.  
 
 

   

Figure 1.  Channel-center results of (a) tumbling components, (b) spinning component and (c) total particle 
enstrophy versus aspect ratio λ.  Tumbling (a) has strong response to inertia for discs, and a weak response to 
inertia for rods.  Spinning (b) has weak response to inertia for discs, and a strong response to inertia for rods. The 

black lines and red lines (c) represent the particle enstrophy <ωi ωi> and the fluid enstrophy <Ωi Ωi> sampled by 

the particles (Eulerian fluid enstrophy is 0.247τη
-2), respectively. Star quantities are normalized with Kolmogorov 

timescale τη, symbols in (a) are laboratory data by Parsa et al. [9] and Marcus et al. [10].  
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Spheroids’ tendency to emphasize specific components of rotation can be explained by examining their 
orientation relative to fluid vorticity; the inner product between a particle’s orientation vector and the 
local fluid vorticity vector yields an angle α, shown in Figure 2 for the nearly-isotropic channel center. 
For St=0 particles, results replicate previous observations [8-14] for discs and rods.  Discs tend to align 
with their symmetry axis (z’) orthogonal to the fluid vorticity, causing strong tumbling [8-14] and weak 
spinning [11, 13]. Rods align parallel to local vorticity [8, 10-14] and thus spin along with it. The most 
recent studies [12, 13, 14] also showed that the preferential alignment of the major axis of tracer 
spheroids in the direction of fluid vorticity vector arises because both independently tend to align with 
the strongest Lagrangian stretching direction. This alignment effect becomes slightly stronger for 
particles with greater departure from sphericity, which can be seen by comparing corresponding lines 
between Fig. 2a and 2b.   

Increased particle inertia weakens the alignment effect for all shapes studied, making rods less likely to 
emphasize spinning and discs less likely to emphasize tumbling (Fig. 1).  This tendency could be caused 
by two mechanisms. First, when inertial spheroids avoid sampling regions of strong vorticity (see figure 
1c), they also avoid regions where they will experience strong alignment, because strain-vorticity 
alignment is strongest in the presence of strong vorticity [12, 13]. Second, because inertial particles do 
not follow the flow passively [20, 28, 29] (even an inertial sphere does not rotate along with the local 
fluid rotation [28]) it is likely that spheroids’ inertia induces a temporal filter on the rotational motion 
and thus prevents the particle from extracting all available vorticity from the flow. Roughly, inertial 
spheroids will not align with or rotate along with motions whose duration is less than the particle 
relaxation time, which leads to less alignment and less emphasis on either tumbling or spinning.    

  

Figure 2.  Channel-center distributions of particles’ instantaneous alignment α with local fluid vorticity for (a) 
moderate asphericity and (b) extreme asphericity.  Solid lines are inertia-free, dashed lines are inertial.  Blue lines 
with diamond symbols are discs, red lines with circle symbols are rods, and green lines with triangle symbols are 
spheres.   
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Figure 3.  Near-wall results of (a) tumbling and (b) spinning component of particle enstrophy and (c) total particle 
and fluid enstrophy.   The black lines and red lines (c) represent the particle enstrophy <ωi ωi> and the fluid 

enstrophy <Ωi Ωi> sampled by the particles, respectively. Plus quantities are normalized by ν-2uτ
4.   

 
Results for the near-wall region (z+= 10) are seen in Fig. 3, which is analogous to Fig. 1 but shows very 
different behavior.  Weakly-inertial (St = 0 and 1) discs tumble, especially when their aspect ratio is near 
1, but they also exhibit a fair amount of spinning as well.  Strongly-inertial discs almost exclusively spin. 
Short and weakly-inertial rods almost equally spin and tumble, and the amount of spinning increases 
with length. As inertia increases, both short and long rods emphasize tumbling more than spinning, 
which indicates that the inertia effect is more dominant than the shape effect.  
 
Similar to the case of the channel center, particle enstrophy near the wall (black lines in Fig. 3c) is less 
than that of the surrounding fluid (thick red lines in Fig. 3c). Unlike the channel center, however, near-
wall particle enstrophy is strongly dependent on shape. Stronger asphericity leads to lower particle 
enstrophy.  The effect of inertia in the near-wall region (enstrophy increasing with particle inertia) is 
opposite to the case seen at the channel center (enstrophy decreasing with particle inertia). The red 
lines in Fig. 3c provide a partial explanation of this effect, showing that particle inertia causes spheroids 
to preferentially sample high-vorticity flow structures in the near-wall region.  Such preferential 
sampling is related to particle clustering, and near-wall clustering has been discussed previously in the 
literature [20].   
 
The preferential sampling seen near the wall is opposite to that at the channel center, suggesting that 
different mechanisms dominate particle clustering in isotropic turbulence than in highly-sheared near-
wall turbulence.  Because both types of preferential sampling are shape-independent (red lines are 
nearly flat in Fig 1c and Fig 3c), our data suggest that the strong shape-dependence of particle enstrophy 
in the near-wall region is caused by more than particle clustering.  To explain this behavior, we examine 
spheroid alignment relative to local vorticity (Figure 4). When their inertia is increased, discs will switch 
from perpendicular (St = 0) to parallel (St = 30) alignment relative to fluid vorticity [21], and therefore 
emphasize spinning induced by the mean fluid shear (Fig. 3b).  A similar effect is seen for rods: when 
their inertia is increased, rods switch from parallel (or partly parallel) [19-20, 30] to perpendicular 
alignment relative to vorticity, thereby emphasizing tumbling (Fig. 3a).  
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Alignment between spheroids and fluid vorticity is caused by a different mechanism near the wall than 
in the channel center. Near the channel wall, the large mean velocity gradient d<U>/dz provides a strong 
mean vorticity in the cross-stream y-direction and the local turbulence field is anisotropic, with vorticity 
fluctuations being strongest in the y-direction and weakest in the x-direction [23, 24]. Recent work on 
the rotational dynamics of a single oblate spheroid in a uniform shear flow revises the concept of Jeffery 
orbits to show that an inertial disc eventually rotates in the shear plane irrespective of its initial 
conditions [31]. Similarly, a prolate spheroid drifts towards rotation in the x-z plane [32]. Similar 
behaviours of inertial spheroids (St = 30) in wall turbulence are observed here, i.e. discs emphasize 
spinning in the x-z plane (aligned with the vorticity vector) whereas rods emphasize tumbling in the x-z 
plane (aligned normal to the vorticity vector). These observations suggest that inertial spheroids in near-
wall turbulence behave just like those in a linear shear flow. The likely reason is that the inertial 
spheroids filter the effect of small-scale turbulent fluctuations and only respond effectively to the 
largest flow structures and the mean shear. In other words, inertia causes the mean-shear effect to 
dominate the rotational dynamics of inertial spheroids in wall turbulence.  

       
Figure 4.  Near-wall distributions of particles’ instantaneous alignment α with local fluid vorticity for (a) moderate 
asphericity and (b) extreme asphericity.  Solid lines are inertia-free, dashed lines are inertial.  Blue lines with 
diamond symbols are discs, red lines with circle symbols are rods, and green lines with triangle symbols are 
spheres.     

Tracer spheroids in the wall region, in contrast to inertial spheroids discussed above, exhibit more 
complex rotational dynamics and their preferential alignment is caused by other mechanisms. Firstly, we 
observe from Fig. 4(b) that inertia-free spheroids tend to align with their symmetry axis normal to the 
vorticity vector, typically in the streamwise direction. This preferential alignment is consistent with 
numerical [18-22] and experimental findings [30] in wall turbulence. However, the preferential 
orientation of the St = 0 spheroids in the near-wall region cannot explain the emphasized tumbling or 
spinning, e.g. both tracer discs and rods only weakly tumble (Fig. 3a) even though they both align (Fig. 
4b) normal to mean vorticity vector. This observation suggests that an inertia-free spheroid does not 
respond efficiently to mean shear.  Recently Voth [33] argued that a weakly-inertial oblate spheroid 
aligned near the wall-normal direction will spend a long time in this orientation before tumbling. 
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Challabotla et al. [34] similarly observed that prolate tracers with their symmetry axis almost aligned in 
the streamwise direction rarely tumble and the observed orientation and rotation of tracer spheroids in 
the viscous sub-layer was qualitatively consistent with spheroids in Jeffery orbits in linear shear flow. 
Thus we conclude that the weak tumbling and spinning for inertia-free spheroids with high aspect ratio 
can be attributed to Jeffery-like orbiting. However, the mechanism that aligns such particles 
preferentially in that orientation remains an open question.  
 
A possible explanation for the preferential alignment is suggested by recent findings concerning 
preferential alignment of a spheroid’s major axis in the Lagrangian strongest stretching direction in 
homogeneous isotropic turbulence [12, 13]. Lagrangian coherent structures (LCSs) [35] act as organizers 
of transport in fluid flows having a clear impact on the particle trajectories [36]. Near-wall LCSs have 
been studied in channel flow turbulence [36-38] and ‘curved legs’ of the coherent streamwise structure 
inclined in the streamwise direction with about 20 degrees were reported [38].  In the present study the 
major axis of the inertia-free spheroids and the near-wall quasi-streamwise vortices vector are both 
almost aligned in the streamwise x-direction. Just as in the channel center, this preferred alignment of 
the spheroids with the quasi-streamwise vortices makes discs tumble more than spin and rods spin 
more than tumble. We therefore hypothesize that the light spheroids are captured by, and partially 
move along with, the coherent vortices in the wall turbulence and therefore preferentially align in the 
streamwise direction.    
 
In conclusion, we have explored rotation about the principle axes of spheroids suspended in turbulent 
channel flow. In the channel center we found that inertia-free spheroids were tumbling and spinning 
just as in homogeneous isotropic turbulence [9, 10], whereas inertia reduced the preferential spinning 
or tumbling and led to a more isotropic rotation. This observation is likely caused by preferential 
clustering of the inertial spheroids in low-vorticity regions and inertial filtering of the local vorticity.  

Spheroids in the wall region are affected both by mean shear and anisotropic fluid vorticity and their 
rotational behaviour is totally different from at channel center. We argue that inertial spheroids respond 
strongly to the mean shear whereas inertia-free spheroids do not. The complex rotation of these tracers 
is a consequence of the preferential orientation of the inertia-free spheroids. We hypothesize that the 
preferential orientation of these particles is caused by interactions with the coherent vortex structures 
in wall turbulence.   

This material is based upon work supported by the National Science Foundation under Grant No. OCE-1334788 (EV), and by the 
Research Council of Norway under Project No. 213917/F20 (HIA) and Programme for Supercomputing. Support and motivation 
was provided by the Peder Sather Center for Advanced Study at University of California, Berkeley.   
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