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It has been predicted and experimentally demonstrated that by injecting squeezed light into an
optomechanical device it is possible to enhance the precision of a position measurement. Here, we
present a fundamentally different approach where the squeezing is created directly inside the cavity
by a nonlinear medium. Counterintuitively, the enhancement of the signal-to-noise ratio works by
de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing
quantum information. This enhancement works for systems with a weak optomechanical coupling
and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum-
limited detectors based on optomechanical devices. Our approach can be straightforwardly extended
to Quantum Non Demolition (QND) qubit detection.

Recent progress in cavity optomechanics [1, 2] has been
so exceptional that the precision of a position measure-
ment has been pushed until the limit set by the princi-
ples of quantum mechanics, the so-called Standard Quan-
tum Limit (SQL) [3–5]. A measurement precision close
to the SQL has been demonstrated in optomechanical
devices with cavities both in the optical [6–8] and in
the microwave [9] domain. Optomechanical position de-
tection is not only of fundamental interest but finds
also application in acceleration [10, 11], magnetic field
[12, 13], and force detectors [14, 15]. Thus, an impor-
tant goal for the future is to develop new techniques to
enhance its precision on different optomechanical plat-
forms. Seminal efforts have focused on gravitational wave
detection in optomechanical interferometers [16–20]. The
standard route to enhance the detection precision con-
sists in injecting squeezed light into the interferometer
[16, 17, 21]. This technique has recently been demon-
strated in the Laser Interferometer Gravitational Wave
Observatory (LIGO) [22] and in a cavity optomechanics
setup [23]. Externally generated squeezed light could also
find application in QND qubit state detection [24, 25]. In-
jection losses are a major hindrance of the effectiveness of
externally generated squeezed light. This has motivated
a number of proposals aiming at creating the squeezing
directly inside the cavity. Intracavity squeezing could
be generated by a Kerr medium [18, 20, 21, 26–28], by
the dissipative optomechanical interaction [29–31], in a
multimode optomechanical system [32], or potentially, by
exploiting the ponderomotive squeezing [33–35].

In this letter, we propose a new pathway to precision
enhancement in optomechanical detection. In our ap-
proach, a nonlinear cavity is operated as a phase-sensitive
parametric amplifier, as shown in Fig. 1. It amplifies a
seed laser beam and its intensity fluctuations. Simultane-
ously, it de-amplifies the phase quadrature where the me-

chanical vibrations are imprinted. At first sight it might
appear counter-intuitive that de-amplification can im-
prove a (quantum) measurement. Here, we suggest that
it is worth to de-amplify a signal if the noise is suppressed
by a larger factor thus obtaining a net enhancement of
the signal-to-noise ratio. Indeed, our analysis shows that
for optomechanical position detection a de-amplification
of the phase quadrature induces only a limited suppres-
sion of the signal but simultaneously can strongly sup-
press the measurement noise. Our scheme could be im-
plemented using a crystalline whispering gallery mode
resonator [36]. Such devices offer a well-established plat-
form for optomechanics [1, 2, 37, 38]. Resonators with an
optical χ(2) nonlinearity can be operated as parametric
amplifiers in the quantum regime [39, 40]. The exciting
perspective of an interplay of optical and optomechani-
cal nonlinearities has already inspired several theoretical
investigations [41–44]. Alternative implementations of
our scheme include optomechanical crystals [45], when
made out of nonlinear materials such as AlN [46] and a
Josephson parametric amplifier [47] coupled to a mechan-
ical membrane or a qubit.

We consider a Degenerate Parametric Amplifier (DPA)
described by the standard linearized Hamiltonian [48]

H = i~n̄1/2p ν
(
â†sâ
†
s − âsâs

)
/2.

The signal mode (annihilation operator âs and decay rate
κs) is driven parametrically at its parametric resonance
via an auxiliary pump mode, n̄p denotes the number of
photons circulating in the pump mode and ν is the single-
photon χ(2) nonlinearity. The parametric amplifier is
characterized by its pump parameter σ

σ2 = n̄p/n̄
(thr)
p , n̄(thr)p =

(κs
2ν

)2
. (1)

The signal mode reaches the threshold of self-sustained
(optical parametric) oscillations when the photon number
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Figure 1. Setup for parametrically amplified optomechanical
position measurement. A whispering gallery mode resonator
(WGMR) with a χ(2) nonlinearity is operated as a degenerate
parametric amplifier. The pump laser (frequency ωp) drives
the signal mode at its parametric resonance but is detuned
compared to the pump mode resonance. An additional laser
beam with the appropriate phase and frequency ωp/2 (seed
laser) is amplified in the WGMR. The signal mode resonance
depends on the amplitude 〈x̂〉 of a mechanical mode deforma-
tion. Thus, the mechanical vibrations are imprinted in the
seed laser phase shift, detected in a homodyne setup.

circulating in the pump mode equals n̄(thr)p , correspond-
ing to the pump parameter σ = 1. Below threshold, the
cavity behaves as a phase-sensitive amplifier as discussed
above.

We want to measure the displacement x̂ of a mechan-
ical resonator with eigenfrequency Ω, effective mass m,
and decay rate Γ. The mechanical resonance could be in-
ternal to the optical resonator (e.g. a breathing mode) or
refer to the vibrations of an external nano-object coupled
evanescently. A displacement x̂ induces a shift −Gx̂ of
the signal mode frequency, described by a Hamiltonian
ĤOM = −~Gâ†sâsx̂ [1]. We measure the displacement
x̂ by extracting the output signal phase of a seed drive
injected at the cavity resonance, where it is most sen-
sitive to the jittering of the optical resonance induced
by the mechanical vibrations. When the seed laser in-
jects a large number n̄s of circulating photons into the
signal mode (below, we specify this condition more pre-
cisely), we can linearize the optomechanical interaction
[1]. Then the mechanical vibrations couple to the optical
field quadrature X̂ = (âs + â†s − 2

√
ns)/
√

2 describing
the amplitude fluctuations: ĤOM = −~G√2n̄sX̂x̂. We
arrive at the Langevin equations for the optical signal
mode quadratures X̂ (amplitude) and Ŷ (phase):

˙̂
X = −(1− σ)κsX̂/2 +

√
κsX̂

(in)

˙̂
Y = −(1 + σ)κsŶ /2 +

√
2n̄sGx̂+

√
κsŶ

(in). (2)

where Ŷ = i(â†s − âs)/
√

2, and X̂(in) and Ŷ (in) are the
standard vacuum input fields (the quantum fluctuations
of the laser beam at the input)[48]. Here, we neglect
intrinsic losses and the coupling to the pump mode fluc-
tuations. We go beyond this ideal description below. As
seen in Eq. (2), the presence of the nonlinear medium and
the pump drive manifests itself in the de-amplification of
the phase quadrature and a corresponding amplification

of the amplitude quadrature. In the limit σ → 0, we
recover the Langevin equations for a cavity measuring
the mechanical displacement in the standard approach
without squeezing.

To improve a measurement by de-amplification might
not sound promising. The measurement noise will be
de-amplified but one could reasonably expect that this
effect will be offset by the de-amplification of the signal.
Indeed, it is true that the response of the cavity to both
the vacuum noise and the mechanical vibrations is de-
creased by the same factor. From Eq. (2), the intracavity
phase quadrature in frequency space is

Ŷ [ω] = χY (ω)
(√

2n̄sGx̂[ω] +
√
κsŶ

(in)[ω]
)

(3)

with the intracavity susceptibility χY = [−iω + (1 +
σ)κs/2]−1. We note in passing that the largest possible
suppression, a factor of 2, occurs in the limit ω → 0
and σ → 1. This is the wellknown 3dB limit of intra-
cavity squeezing [49]. However, the suppression of the
background noise and of the mechanical signal is differ-
ent outside the cavity. From the input/output relation
Ŷ (out) = Ŷ (in) −√κsŶ we find

Ŷ (out)[ω] = [1− κsχY (ω)]Ŷ (in)[ω]−
√

2κsn̄sGχY (ω)x̂[ω]
(4)

From this formula we see that the response of the phase
quadrature of the transmitted signal to the mechanical
vibrations is still governed by the intracavity susceptibil-
ity and is thus subject to the 3dB limit of squeezing. In
contrast, the output phase noise is squeezed below the
3dB limit by the destructive interference between the
reflected input noise and the response of the cavity to
that noise. Indeed, it is well known that the output
noise squeezing can be arbitrarily large [21]. Thus, we
expect an overall enhancement of the measurement pre-
cision accompanied by de-amplification. This behavior
is displayed by the symmetrized spectral density of the
output phase quadrature

S̄Y Y (ω) =

ˆ ∞
−∞

dt

2
eiωt〈

{
Ŷ (out)(t), Ŷ (out)(0)

}
〉, (5)

i. e. the quantity measured in the homodyne set up, see
Fig. 2.

We briefly comment on the similarities between our
proposal and other schemes where interference effects en-
hance the optomechanical position detection. In dissi-
pative optomechanical setups [29, 30], the interference
between the light impinging on the cavity and the light
filtered by the cavity enhances the signal intensity rather
than reducing the measurement noise. Closer to our set-
tings, a nonlinear cavity operated close to its static bista-
bility [18, 20, 21, 26–28] is formally equivalent to an effec-
tively detuned DPA [27]. Due to the effective detuning,
the amplitude and phase fluctuations become correlated.
An important consequence of such correlations is that
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Figure 2. Output phase noise S̄(out)
Y Y as a function of frequency.

Comparison between the phase noise in presence and in ab-
sence of the pump drive for the same number of circulating
photons n̄s. In presence of the pump laser (pump parameter
σ = 0.6), the background noise inside the amplifier bandwidth
is squeezed below the shot noise level by more than 3dB. The
signal amplitude is also reduced, but in this case the reduction
is bounded by the 3dB limit. The number of circulating pho-
tons n̄s is chosen to yield the minimum added noise allowed
by the SQL, for σ = 0.6. Thus, the imprecision noise and the
backaction noise (shown in the zoom) have the same intensity
at the mechanical resonator eigenfrequency Ω. The remaining
parameters are: Ω = 0.2κs, Γ = 10−3κs, kBT/~Ω = 1.

the SQL is reached only away from the mechanical res-
onance (whereas for us it is reached precisely at reso-
nance) [27]. For such a quantum-limited measurement,
one should measure the quadrature whose homodyne sig-
nal is amplified by the cavity [27]. If one does not aim at
a quantum-limited measurement, one can also measure
the de-amplified quadrature [20]. This leads to an im-
provement of the signal-to-noise ratio similar to the one
observed here. However, this is accompanied by a loss
of quantum efficiency because most of the information
regarding the mechanical vibrations is imprinted on the
other, amplified quadrature, and thus the SQL would not
be reached. Most importantly, there is not such a trade
off in our scheme where all information is imprinted on
the de-amplified quadrature.

In order to quantify the net enhancement of the
measurement precision, it is convenient to define the
measured noise referred back to the input S̄(meas)

xx =
S̄Y Y /(2κsn̄sG

2|χY |2). Then, from Eq. (4) the measured
noise takes the form S̄

(meas)
xx (ω) = S̄xx(ω) + S̄

(add)
xx where

S̄xx(ω) describes the symmetrized mechanical noise in
absence of optomechanical backaction, whereas S̄(add)

xx is
the noise added during the measurement. We are inter-
ested in the noise at frequency Ω where the mechanical
spectrum is peaked. Since there is a typical number of
circulating photons (specific of the device) that can be
tolerated without inducing strong heating effects, we use
as a figure of merit of our measurement scheme the added
noise S̄(add)

xx (Ω) for a fixed effective number of circulating
photons, n̄ = n̄s + n̄p/η. The device-dependent coeffi-
cient η reflects the different impact on heating of signal
and pump photons. In first approximation, one can iden-

tify η with the ratio of the energy quanta of the signal
and pump modes, η ≈ 1/2. Below, we show that inter-
nally generated optical squeezing can strongly enhance
the precision when

Cthr ≡
g20κs
ηΓν2

=
4g20n̄

(thr)
p

ηΓκs
� 1. (6)

Here, g0 = G/xZPF is the optical frequency shift when
the oscillator is displaced by the quantum length scale
xZPF =

√
~/mΩ [1]. The parameter Cthr, which we refer

to as threshold cooperativity, is the optomechanical co-
operativity if n̄s = n̄

(thr)
p /η photons were in the signal

mode. It quantifies the ratio of optomechanical and non-
linear coupling. Notice that in the absence of squeezing
the SQL is reached for the optomechanical cooperativ-
ity C = 1/4 [1]. Thus, if Cthr � 1 it is not possible
to achieve a precision close to the SQL by injecting all
available photons n̄s ∼ n̄

(thr)
p /η directly into the signal

mode. Instead, one can enhance the measurement preci-
sion by injecting part of the photons into the pump mode
to generate squeezing, as shown below.

We now calculate the added noise S̄
(add)
xx . We dis-

tinguish between two different contributions [3–5]: the
so-called imprecision noise S̄(imp)

xx (ω) and the backaction
noise S̄

(back)
xx (ω). The former is due to the shot noise

phase fluctuations. The latter is the additional mechan-
ical noise induced by the backaction of the light onto
the mechanics. It can be expressed as S̄

(back)
xx (ω) =

|χM (ω)|2S̄FF (ω) in terms of the mechanical susceptibil-
ity χM (ω) = m−1(Ω2 − ω2 + iωΓ)−1 and the noise spec-
trum S̄FF of the radiation pressure force F̂ =

√
2n̄s~GX̂.

We note in passing that our measurement scheme could
also find application in the detection of any degree of
freedom coupled dispersively to the cavity, e. g. a qubit
[4]. From Eq. (2) we can readily derive the identity
S̄
(imp)
xx (ω)S̄FF (ω) = ~2/4 valid for all values of σ. It is

well known that when this equality holds both the posi-
tion detection of resonant vibrations and the QND qubit
state detection are quantum-limited [3–5]. We compute
the overall added noise S̄(add)

xx = S̄
(imp)
xx + S̄

(back)
xx from

Eq. (2),

S̄
(imp)
xx

S̄SQL
xx

=
(1− σ)2 + 4Ω2/κ2s

8Cthr[ηn̄/n(thr)
p − σ2]

,
S̄
(back)
xx

S̄SQL
xx

=
S̄SQL
xx

4S̄
(imp)
xx

.

(7)
Here, we have introduced the minimum added noise al-
lowed by the SQL S̄SQL

xx = ~/mΩΓ [3–5]. Fig. 3(a) shows
the added noise Eq. (7) as a function of the circulating
photon number n̄ and the pump parameter σ. For σ = 0
(no circulating photons in the pump mode), we recover
the result for standard optomechanical detection. The
SQL is reached for S̄(add)

xx = 2S̄
(imp)
xx = 2S̄

(back)
xx = S̄SQL

xx

[3–5], see also the zoom in Fig. 2. From Eq. (7), we find
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the required photon number

n̄SQL(σ) =
n̄
(thr)
p

η

[
(1− σ)2 + 4Ω2/κ2s

4Cthr
+ σ2

]
. (8)

It is shown as a yellow solid line in Fig. 3(a). By mini-
mizing n̄SQL(σ) as a function of σ, we find the minimal
number of circulating photons n̄∗ necessary to reach the
SQL and the corresponding optimal pump parameter σ∗,

n̄∗ = n̄SQL(σ∗), σ∗ = (1 + 4Cthr)−1 . (9)

Compared to the standard scheme, where the SQL is
reached for n̄SQL

standard = n̄SQL(σ = 0) circulating photons,
the required number of photons is suppressed by a factor
of

n̄SQL
standard/n̄

∗ =
1 + 4Ω2/κ2s

1− (4Cthr + 1)−1 + 4Ω2/κ2s
. (10)

The suppression factor increases monotonically with in-
creasing optical nonlinearity (decreasing threshold coop-
erativity Cthr) and reaches the asymptotic value κ2s/4Ω2

for large optical nonlinearities (Cthr � 1), in the bad-
cavity limit Ω � κs. Our method is still useful even
when it is not possible to reach the SQL because the
typical number of circulating photons tolerated in the
the device is too small (smaller than n̄∗). In this case,
the added noise remains larger than S̄SQL

xx , yet it can still
be decreased by the squeezing. By minimizing S̄(add)

xx in
Eq. (7) as a function of σ for a fixed n̄ (smaller than n̄∗),
we find the optimal pump parameter

σ̃ =
B
2
−
(
B2
4
− ηn̄

n̄
(thr)
p

)1/2

, B = 1 +
ηn̄

n̄
(thr)
p

+ 4
Ω2

κ2s
.

(11)
It increases monotonically with the number of circulating
photons and reaches the value σ̃ = σ∗ for n̄ = n̄∗, see the
white dashed line in Fig. 3(a).

Next, we go beyond the simple description of an ideal
parametric amplifier, taking into account intrinsic losses,
the radiation pressure coupling between the mechanics
and the pump mode, and that signal photons can be up-
converted by the χ(2) interaction. In this scenario, the
vibrations are imprinted also in the pump output. Thus,
the backaction of the pump field give rise to additional
mechanical noise. Moreover, the up-converted photons
can decay via the pump mode decreasing the measure-
ment precision. A similar increase of the measurement
imprecision occurs in the presence of material absorption.
A full analysis of these effects is provided in the Supple-
mental Material [50] and can be summarized as follow: (i)
The additional backaction is a small fraction of the mini-
mal added noise S̄SQL

xx for Cthr � 1 (the regime of interest
in this work); (ii) The imprecision noise is substantially
increased only for loss rates κ(loss)s , κ(loss)s & Ω2/κs. The
overall loss rate takes the form

κ(loss)s = κ(abs)s + 4ν2n̄sκp/(4∆2
p + κ2p), (12)

circulating photons 
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Figure 3. (a) Added noise at the mechanical frequency as
a function of the total number of circulating photons n̄ =
n̄s + n̄p/η and the pump parameter σ, for Cthr = 0.1. The
coordinates (ηn̄/n̄

(thr)
p , σ) where the added noise equals the

SQL are indicated by the yellow solid line, see Eq. (8). For
n̄ < n̄∗ the added noise is always larger than the SQL. In this
case, the minimum noise for a fixed n̄ is realized on the white
dashed line, where the pump parameter σ̃ is given by Eq. (11).
(b) Added noise as a function of the cooperativity Cthr, for
n̄ = n̄

(thr)
p /η: in the ideal case with squeezing (κ(abs) = 0,

|∆p|/κp → ∞), in the presence of losses, pump bacaction,
and squeezing (κ(abs) = Ω2/κs, −∆p/κp → 5 ), and in the
absence of squeezing and losses (σ = 0). In both panels we
have chosen κs/Ω = 10. In the right panel, we have chosen
η = 1/2, κs = κp, and equal couplings of the mechanics to
the pump and the signal modes.

where κ(abs)s is the rate of material absorption, while κp
and ∆p are the pump mode decay rate and detuning,
respectively. Thus, for a typical signal photon number
n̄s ∼ n

(thr)
p , a detuning of a few linewidths is enough

to suppress the additional decay via the pump mode.
This allows a de-amplification induced enhancement of
the measurement precision in a broad range of threshold
cooperativities Cthr, see Fig. 3(b).

The inevitable increase of the intensity fluctuations in
the proposed measurement scheme represents a potential
contradiction of the assumption of small fluctuations, in-
herent to the linearized Langevin equations (2). How-
ever, it can be shown that the enhanced fluctuations re-
main compatible with the linearization, provided that the
single-photon nonlinearity ν is not too large, ν � Ω [50].

The regime of small threshold cooperativities Cthr � 1
is realized in state-of-the art lithium-niobate microdisks
[39, 40, 51]. These devices have breathing modes with
eigenfrequencies Ω in the MHz range. Typical single-
photon optomechanical couplings are in the sub-Hz
range, whereas single-photon optical nonlinearities ν are
in the kHz range. Thus, the regime Cthr � 1 is compat-
ible with the bad-cavity limit even for disks with large
mechanical quality factors. Moreover, the nonlinear cor-
rections to the Langevin equations (2) will be small.

Our scheme could also find application in feedback
cooling based on optomechanical position detection [52].
Cooling down to the mechanical groundstate places much
more stringent demands on the measurement imprecision
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than the SQL [8], S̄(imp)
xx . S̄SQL

xx /n̄(th) where n̄(th) is the
initial number of thermal phonons. This requires circu-
lating photon numbers enlarged by a factor n̄(th), such
that the reduction afforded by our squeezing scheme be-
comes even more relevant.

In conclusion, we have shown that the precision of
optomechanical position detection can be strongly en-
hanced by de-amplification without loss of quantum ef-
ficiency in a monolithic on chip solution. Our method
could pave the way to the quantum-limited position de-
tection of mechanical resonators with larger decay rates.
This would allow faster detection of forces yielding an
increase of the bandwidth of quantum-limited detectors
based on optomechanical devices [2]. A natural extension
of our scheme could find application in QND qubit state
detection.
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