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We engineer a quantum bath that enables entropy and energy exchange with a one-dimensional
Bose-Hubbard lattice with attractive on-site interactions. We implement this in an array of three
superconducting transmon qubits coupled to a single cavity mode; the transmons represent lattice
sites and their excitation quanta embody bosonic particles. Our cooling protocol preserves particle
number—realizing a canonical ensemble— and also affords the efficient preparation of dark states
which, due to symmetry, cannot be prepared via coherent drives on the cavity. Furthermore, by ap-
plying continuous microwave radiation, we also realize autonomous feedback to indefinitely stabilize
particular eigenstates of the array.

Ordinarily, uncontrolled dissipation destroys quantum
coherence, but it is now appreciated that an engineered
quantum bath is a valuable resource for quantum compu-
tation (state preparation [1–4] and system reset[5]) and
quantum error correction [6]. A dynamical bath can in-
duce cooling or heating, and is of great utility in optome-
chanical ground state preparation [7, 8], quantum state
transfer between various EM modes [9–11], amplifica-
tion [12–14], many-particle quantum simulation [15, 16],
and entanglement generation [17, 18].

Initially conceived and implemented in trapped ion
systems [19, 20], dissipation engineering has been im-
plemented in solid state systems with two recent exper-
iments on superconducting qubits: autonomously con-
trolling the orientation on the Bloch sphere of a sin-
gle qubit [3], and stabilizing a Bell-state in a two-qubit
system [4]. In this Letter, we experimentally demon-
strate that dissipation engineering can be used to control
a novel, complex superconducting system embodying a
much larger Hilbert space: the ten lowest-lying energy
levels of a coupled, three-transmon array which realizes a
one-dimensional, attractive Bose-Hubbard Hamiltonian.
The techniques employed in this work define a path for
cooling and stabilizing complex quantum systems to spe-
cific target states.

The Bose-Hubbard Hamiltonian [21] is a prototypi-
cal model used to describe a broad class of quantum
matter. While the repulsive side of the Bose-Hubbard
phase diagram has been extensively explored in ground-
breaking experiments with ultracold atoms in optical lat-
tices [22–24], the attractive regime has thus far eluded
emulation. Our realization of this model here, in per-
haps its simplest incarnation, opens the door to exper-
imental verification of as-yet unexplored predictions of
attractive Bose-Hubbard dynamics: the existence of self-
bound states [25–27] and the possibility to create large-
scale multipartite entanglement [28].

The cooling protocol we develop here, based on Ra-
man scattering processes, facilitates entropy and energy
exchange between the qubit array and its bath while pre-
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FIG. 1: (a) A schematic (not to scale) of the experimental
setup described in the text. (b) Spectroscopically measured
eigenfrequencies of the one- and two-particle states of the ar-
ray as a function of current through the external bias coil.
For a given current, the flux through the two SQUIDs in the
array differs by 2.5%; 17 mA roughly corresponds to a quar-
ter of a flux quantum. Solid lines denote measured frequen-
cies with fits to the 1D Bose-Hubbard Hamiltonian shown as
overlaid dashed lines. Red lines correspond to two-particle
states; green lines are one-particle states. The inset shows
raw data near the |E1〉 frequency, from which the darkness
of the |G〉 → |E1〉 transition discussed in the text becomes
apparent.

serving the total number of excitation quanta in the ar-
ray. Essentially, this amounts to simulation within the
canonical ensemble; a similar path to grand-canonical
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FIG. 2: (a) and (b) Examples of spontaneous decays from
two-particle states to the global ground state via the one-
particle subspace. In (a), |F5〉 decays rapidly and almost en-
tirely to |E2〉, which then decays to |G〉, while in (b), |F2〉
decays with roughly equal rates to |E1〉 and |E2〉. Overlaid
black lines are obtained from fitting the decay data for all nine
excited states to a single rate-equation model, as described in
the supplement [29]. (c) An illustration of the natural decay
pathways of the system, from the two-particle subspace on
the left, through the one-particle subspace in the middle, to
the zero-particle state on the right. Each black arrow repre-
sents a decay channel, with the opacity of the line indicating
the rate of the transition. Darker lines indicate faster rates,
as the legend shows. Also shown are representations of the
eigenstate wavefunctions in the qubit basis. The black circle
radius is proportional to the mean particle number.

simulation via bath engineering (using photons) has re-
cently been proposed theoretically by Hafezi et al [30].
In another related work, a cooling scheme similar to
ours has been employed recently to measure the dynamic
structure factor of a gas of cold atoms [31]. Addition-
ally, a recent experiment with superconducting qubits
has achieved simulation of the unitary Fermi-Hubbard
dynamics via discrete gates [32].

Our system is comprised of an array of three
capacitively-coupled transmon qubits [33], each coupled
dispersively [34] to a waveguide cavity [35]. The two
qubits on the ends of the array utilize a SQUID loop
to allow tuning their frequencies via an external mag-
netic field. Taking into account the full transmon spec-
trum [33], the system is described by the Hamiltonian
H = Hcav +Harray +Hint, with

Hcav = ~ωc
(
a†a+ 1/2

)
(1)

Harray = ~
3∑
j=1

(
ωjb
†
jbj +

αj

2 b
†
jb
†
jbjbj

)
+~J

2∑
j=1

(b†j+1bj + b†jbj+1)

+~J13(b†1b3 + b†3b1)

(2)

Hint = ~
3∑
j=1

gj(bja
† + b†ja), (3)

where a† and b†j are creation operators for cavity pho-

tons and excitation quanta of the jth qubit in the ar-
ray, respectively. Hcav is the Hamiltonian for the 7.116
GHz waveguide cavity, which couples dispersively to each
qubit in the transmon array with strength gj , as de-
scribed by Hint. The array itself is described by Harray:
each transmon is a weakly anharmonic oscillator with
|0〉 → |1〉 transition frequency ωj and (negative) anhar-
monicity αj . The three-qubit system is effectively an
array of lattice sites on which particles—the transmon
excitation quanta—can hop with nearest-neighbor tun-
neling strength ~J , and next-nearest-neighbor tunneling
~J13 (set primarily by the capactive coupling [36]), with
J13 � J . In this language the negative anharmonic-
ity of the transmon gives rise to an attractive pairwise
interaction between these particles, since distributing a
pair of excitations among two identical transmons takes
an energy α more than lumping the quanta together on
the same qubit. It is this combination of tunneling and
on-site interaction which realizes the canonical 1D Bose-
Hubbard Hamiltonian [21].

Since the Bose-Hubbard Hamiltonian conserves total
particle number, eigenstates of the three-qubit array can
be grouped into manifolds characterized by this quantum
number. In our experiment, we work with the zero, one,
and two-particle manifolds, comprising respectively one,
three, and six states. We denote the zero-particle state
by |G〉, the single-particle states by {|Ei〉, i ∈ [1, 3]},
and the two-particle states by {|Fj〉, j ∈ [1, 6]}, with in-
creasing subscript value indicating higher-energy states.
Due to the dispersive interaction between qubits and the
cavity, a reflected microwave signal near the cavity reso-
nance frequency acquires a phase shift dependent on the
state of the array. Amplification of the readout signal
via a Josephson parametric amplifier [37] and subsequent
higher-temperature electronics allows for measurement of
the signal phase and hence the array state.

Using this dispersive readout, we first characterize the
system by spectroscopically probing its energy levels as
the edge qubit frequencies are tuned down via external
magnetic flux. As shown in Fig. 1, our measurement of
the system’s one- and two-particle energy states agrees
well with predictions based on the attractive 1D Bose-
Hubbard Hamiltonian. The extracted parameters are:
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FIG. 3: (a) An approximate representation of the eigenstates of the array-cavity system; states in the left-hand (right-hand)
column contain zero (one) cavity photons. In this picture, our cooling process can be understood qualitatively as follows (taking
|E2〉 → |E1〉) as an example: the cooling drive at frequency ωc −∆c induces a transition from |E2〉 |0〉 to |E1〉 |1〉, where the
second ket indicates the cavity photon number. The cavity state |1〉 decays via photon emission, leaving the system in the
state |E1〉 |0〉, as desired. (b) Example of cooling from |E2〉 → |E1〉 at an incident power corresponding to 1.3 drive photons in
the cavity. (c) The cooling rate versus drive frequency is Lorentzian, centered around ωc − (E2 − E1), with linewidth roughly
κ. As the drive power is increased, the Lorentzian peak shifts due to a Stark shift of the relevant transition frequency. The
inset shows that in the regime where the cooling rate is much lower than κ, the rate scales linearly with incident power. (d)
Example of cascaded cooling, where the system is cooled from |F3〉 to |F1〉 via the intermediate state |F2〉. (e) Connected graphs
representing the measured cooling rates per photon in the linear regime for the one- (left) and two- (right) particle subspaces,
with the width of the line indicating the rate of the corresponding transition. The dispersive shifts for the |F3〉 and |F4〉 states
are almost identical, so they cannot be distinguished by our measurement. We thus do not measure cooling from |F4〉 to |F3〉.

ω1/2π = 5.074 GHz, ω2/2π = 4.892 GHz, ω3/2π = 5.165
GHz, J/2π = 0.177 GHz and J13/2π = 0.026 GHz, all to
within ± 0.003 GHz. The cavity-qubit coupling g1/2π =
149 ± 7 MHz, g2/2π = 264 ± 7 MHz, g3/2π = 155 ± 7
MHz and qubit anharmonicities α1,3/2π = -214± 1 MHz,
α2/2π = -240 ± 1 MHz, were calibrated independently.
While at zero applied flux the qubits are relatively well-
separated in frequency, as the edge qubits are tuned down
towards the middle qubit, avoided crossings become ap-
parent, showcasing the coupling between the qubits. Our
system lies in the parameter regime where the compet-
ing tunneling (J/2π ∼ 180 MHz) and on-site interactions
(α/2π ∼ −220 MHz) have nearly equal strength.

At an external field corresponding to 10 mA in the
bias coil, the individual qubit frequencies approximately
coincide—the detunings between neighboring qubits, 45
and 115 MHz, are lower than the tunneling rate J .
At this bias we characterize—in the absence of engi-
neered dissipation—the particle-loss dynamics resulting
from coupling to the dissipative environment comprised
of both the leaky cavity (κ/2π = 10MHz) and micro-
scopic material imperfections. A coherent microwave
pulse initializes the system to the desired |Ei〉 or |Fj〉

state, after which the resulting populations are measured
as a function of time. As expected, these decay dynamics
fit well to a model which only includes single-particle loss
events: direct transitions from the |Fi〉 states to |G〉 are
suppressed, as recently observed with a single transmon
qubit [38]. Examples of such decays are shown in Fig. 2a-
b, while Fig. 2c shows the full map of decay rates within
these subspaces.

A striking feature of the natural decay dynamics is the
discrepancy between decay times of different states in
the same manifold. For example, |E1〉 and |E2〉 live for
∼ 30µs, while |E3〉 decays much more quickly, in ∼ 3µs.
This is due to the substantially different dipole transi-
tion matrix elements that each single-particle state |Ei〉
exhibits with respect to the final state |G〉. A related con-
sequence of these dipole moments is shown in the inset
of Fig. 1, where at 10.71 mA, |E1〉 goes fully dark, i.e.
becomes impossible to excite via a coherent microwave
pulse. Under only Purcell decay—in the absence of ma-
terial losses in the system—such a dark state would live
indefinitely, making it attractive for shelving an excita-
tion if it could be readily prepared. We will return to the
preparation of these dark states as one application of our
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FIG. 4: Steady state population at the different stages of
the persistent stabilization scheme of the two particle ground
state |F1〉. The top trace shows the thermal equilibrium pop-
ulation, where 78% of the population is in |G〉. In each sub-
sequent trace a further drive is added: first a coherent drive
|G〉 → |E3〉 (I), then cooling from |E3〉 → |E1〉 (II), coherent
drive from |E1〉 → |F4〉 (III), and finally a cooling drive from
|F4〉 → |F1〉 (IV). At the end, 67% of the population is in the
desired state, |F1〉. |F4〉 contains the bulk, 13%, of the resid-
ual population. Single-particle (|E1〉) stabilization achieves a
population of 80% (data not shown).

bath engineering protocol, which we now discuss.

By altering the quantum noise spectrum of the bath
interacting with the Bose-Hubbard chain, we can mod-
ify the system decay dynamics. In our cooling protocol,
this alteration takes the form of an additional microwave
drive incident on the cavity, red-detuned from the cav-
ity resonance by an amount ∆c, as illustrated in Fig. 3a
for the |E2〉 to |E1〉 transition. This induces quantum
photon shot noise whose spectral density peaks at fre-
quency |∆c| [39]. When ~∆c matches the energy dif-
ference between the array’s initial state |i〉 and a lower
eigenstate |f〉, the emission of a photon at the cavity’s
resonance frequency mediates a so-called cooling transi-
tion from |i〉 to |f〉. The energy gained from the cooling
transition augments the incident photon energy to allow
emission on resonance. Similarly, a blue-detuned drive
induces heating transitions to array states of higher en-
ergy. The rate for these processes will depend on both
the Raman-transition matrix element between the initial
and final array states and on the incident photon flux.
The transition rate increases with photon flux up to a
value of ∼ κ, saturating there as the dissipative process
requires the emission of a photon by the cavity. Since
κ is much larger than most of the natural decay rates,
this technique is well suited to driving otherwise inacces-
sible particle-number-conserving transitions in our sys-
tem. More details on the cooling protocol can be found
in [29].

To characterize the cooling dynamics, we initialize the
system into an |Ei〉 or |Fj〉 eigenstate and subsequently
apply a cooling drive for a variable time and measure the
state of the array. Cooling rates are extracted via a fit to
a model similar to that used for the natural decays, with
additional parameters to capture the induced intraman-
ifold transitions. Because the cavity’s density of states
exhibits a Lorentzian profile with width κ, so will the
transition rate as a function of cooling drive frequency,
as shown for the |E2〉 to |E1〉 transition in Fig. 3c.

For incident powers which cool at a rate Γi→j much
lower than κ, a Fermi Golden Rule calculation [29] shows
that

Γi→f ∝ Pin|Mif |2
κ

(ωi − ωf + ∆c)2 + (κ/2)2
, (4)

where Pin is the incident cooling drive power and Mif

the matrix element connecting the states |i〉, |f〉 of the
cooling operator [29] which describes the effect of the
dissipative bath; in other words Mif quantifies the cou-
pling between the states |i〉 and |f〉 indirectly via the
cross-Kerr terms that couple the qubits with cavity. The
predicted linear scaling of the peak Γ with Pin is shown in
the inset of Fig. 3c for the |E2〉 → |E1〉 transition. |Mij |
provides a measure of the efficacy of each transition; we
map out this value for each pair of eigenstates, showing
the results in Fig. 3e.

In most cases, applying a drive whose frequency is tar-
geted to cool |i〉 to |f〉 has no effect on the decay dynam-
ics of the other states, as most cooling drive frequen-
cies are spaced apart by more than several κ. However,
when multiple cooling frequencies are separated by less
than κ, a single drive can give rise to a so-called cas-
caded cooling effect, whereby multiple cooling transitions
happen in sequence. In our system, for example, the
|F3〉 → |F2〉 and the |F2〉 → |F1〉 transitions are sepa-
rated by only 17 MHz, so a single tone can cause the
system to cascade from |F3〉 to |F1〉 via the intermedi-
ate state |F2〉, as shown in Fig. 3d. In the specific ex-
ample shown, since the cooling matrix element between
|F3〉 and |F2〉 is substantially lower than that of |F2〉
and |F1〉 (|M21| ∼ 5|M32|), we cooled with the drive fre-
quency tuned to the |F3〉 → |F2〉 transition; this achieved
approximately equal cooling rates from |F3〉 to |F2〉 and
|F2〉 to |F1〉. Cascaded cooling sequences could be useful
in larger many-qubit systems with manifolds containing
several closely-spaced eigenstates (see [29] for details).

The transitions |G〉 → |E1〉, |G〉 → |E2〉, and |Ei〉 →
|F1〉 do not interact strongly with the electromagnetic
environment of the cavity on account of the symmetry
of the states; this decoupling is responsible for their rel-
atively long lifetimes. Correspondingly, however, it is
difficult to coherently initialize these states via direct
transitions, but our cooling scheme affords their efficient
preparation. To illustrate this, consider the |G〉 → |E1〉
transition, which as shown in Fig. 1, is at its darkest at a
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flux bias of 10.71 mA. At this bias point, we use the Ra-
man cooling protocol to prepare |E1〉 indirectly via the
|E3〉 → |E1〉 cooling transition (data not shown). Fur-
ther, by combining coherent drives with Raman cooling,
we stabilize |E1〉 indefinitely against particle loss. As the
first part of Fig. 4 illustrates, this is done by coherently
driving the |G〉 to |E3〉 transition with a Rabi frequency
of 7 MHz while applying a drive to cool the |E3〉 → |E1〉
transition at a rate of 3 MHz. We next use |E1〉 as a
stepping stone to stabilize the two-particle ground state
|F1〉, as shown in the lower part of Fig. 4. To accom-
plish this we add two additional drives, an extra coher-
ent drive from |E1〉 → |F4〉 with a Rabi frequency of 7
MHz, and a cooling drive from |F4 |→〉 |F1〉 with a rate
of approximately 3 MHz. Observed fidelities, while in-
line with a rate matrix calculation, are primarily limited
by spurious thermal population of dark states, which can
be reduced by additional cooling tones. This initializa-
tion and maintenance of the array in the ground state
of a specific particle-number manifold will be a valuable
resource for a hardware simulator.

In conclusion, we have realized a three-qubit trans-
mon array and spectroscopically verified that it obeys
an attractive 1D Bose-Hubbard Hamiltonian up to the
ten lowest-lying eigenstates, highlighting the use of cir-
cuit QED in simulating otherwise challenging quantum
systems. Our developed cooling and stabilization proto-
cols, based on quantum bath engineering–a well-studied
phenomenon in quantum optics–afford effective control
over this solid state system. The capabilities demon-
strated here–engineering decay dynamics and stabilizing
particular eigenstates–show that dissipation engineering
can be a valuable tool as superconducting circuits scale
up in complexity to complement simulators based on cold
atoms and trapped ions.
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