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Cold atomic gases have proven capable of emulating a number of fundamental condensed
matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-
Ovchinnikov pairing and the quantum Hall effect. Cooling to a low enough temperature to explore
magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We
propose a method to produce a low temperature gas by preparing it in a disordered potential and
following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits
these incompletely understood phases. We show, using quantum Monte Carlo simulations, that
we can approach the Neél temperature of the three-dimensional Hubbard model for experimentally
achievable parameters. Recent experimental estimates suggest the randomness required lies in a
regime where atom transport and equilibration are still robust.

Introduction: The interplay of disorder and
interactions is a central problem in condensed
matter physics, both from the viewpoint of materials
like the heavy fermions [1, 2], high-temperature
superconductors [3], and manganites [4], and also
because of intriguing theoretical issues such as the fate
of Anderson localization in the presence of interactions,
especially in two dimensions [5, 6]. Ultracold atomic
gases offer the opportunity to emulate these fundamental
issues using optical speckle [7, 8], impurities [9], or a
quasiperiodic optical lattice [10, 11] to introduce
randomness. In the bosonic case, the competition
between strong interactions and strong disorder has
been studied in the context of the elusive Bose glass
phase [7, 9, 11], while for fermions, a recent experiment
has explored disorder-induced localization in the three-
dimensional (3D) Hubbard model of strongly-interacting
fermions [12].

In this paper, we explore the thermodynamics of
interacting, disordered systems and suggest that, in
addition to studies of the many-body phenomena noted
above, preparing a gas in a random potential might
be exploited to cool the atoms. Specifically, we show
using an unbiased numerical method that one can
lower the temperature and access the regime with long-
range magnetic order by adiabatically decreasing the
randomness in the chemical potential or hopping energies
of the Hubbard Hamiltonian. The achievement of
new quantum phases in cold atom experiments largely
depends on the reduction of the entropy per particle. The
success of our proposal requires that the gas would have
to be cooled (eg evaporatively) after the disorder is in
place. We will return in the conclusions to a discussion
of how our approach can be implemented in practice.

Results for the double occupancy and

antiferromagnetic structure factor lend physical insight
into this effect. We also present arguments, partially
based on recent experiments, that our suggestion is
achievable in practice.

We consider the disordered Hubbard Hamiltonian,

H = −
∑
〈ij〉σ

tij(c
†
iσcjσ + c†jσciσ)

+ U
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
)−

∑
i

µi (ni↑ + ni↓) (1)

whose emulation [13, 14] with optical lattices is possible
using two hyperfine species of fermionic atoms. Here
c†iσ(ciσ) is the creation (destruction) operator for a
fermion at spatial site i and spin (or hyperfine state) σ.
We consider a cubic lattice of N sites, and hopping tij
between near neighbors 〈ij〉. The hopping, and the on-
site repulsion U , can be tuned with the lattice depth and
the Feshbach resonance [13], allowing for the successful
exploration of the Mott transition [15–17].

Disorder is introduced via a spatially random chemical
potential µi or hopping tij . We choose uniform
distributions µ0 − ∆µ < µi < µ0 + ∆µ or t0 − ∆t <
tij < t0 + ∆t, and set the mean of the hopping energy
t0 = 1 as the energy scale. For most of this paper
we choose µ0 = 0, which makes the lattice half-filled
(average density n = 1). However, we also gain insight
into the effects of a confining potential, in which the
chemical potential increases as one moves spatially away
from the trap center, by presenting data for different
densities.

Our computational method, determinant quantum
Monte Carlo (QMC) [18, 19], treats disorders and
interactions on an equal, exact footing, and provides
a solution to the Hubbard Hamiltonian on lattices of
finite spatial size, when the sign problem isn’t too



2

0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.1 1 10 100
0.0

0.1

0.2

0.3

0.4

U/t
0
 = 8

 ∆
µ
/t

0
 = 0

 ∆
µ
/t

0
  = 2

 ∆
µ
/t

0
  = 4

 ∆
µ
/t

0
  = 8

 ∆
µ
/t

0
  = 12

 ∆
µ
/t

0
  = 16

 

 

S/
(N

k B
)

T/t
0

 

 

D
T/t

0

FIG. 1: (Color online) Entropy per site S/N as a function of
T/t0 for different site disorder strengths ∆µ at U/t0 = 8. S
is largely independent of disorder strength for ∆µ/t0 = 2, 4 .
U/t0 = 8. For larger randomness, S(T ) decreases with ∆µ so
that if disorder is turned off adiabatically, the temperature
T decreases, as indicated by the horizontal arrow. The
inset shows the double occupancy D(T ). Large disorder ∆µ

changes the sign of the slope dD/dT from mostly positive, to
mostly negative. Here, and in all subsequent figures, unless
otherwise indicated, the lattice size is 63, n = 1, and the
Trotter discretization is ∆τ = 1/(20t0). Up to 300 disorder
realizations are used in the disorder averages.

serious [20–24]. We focus on the disorder dependence
of the entropy S(T ), obtained via a thermodynamic
integration of the energy [25] down from T = ∞.
We also report results for the (site-averaged) double
occupancy D = 1/N

∑
i〈ni↑ni↓〉, and the structure factor

Sq =
∑
r e

iq·rc(r) at q = (π, π, π); Sπ, where c(r) =

〈c†i+r ↓ci+r ↑c
†
i ↑ci ↓〉 are spin-spin correlation functions.

Results: The effect of site disorder on S(T ) is shown in
Fig. 1 at U/t0 = 8, where the Neél transition temperature
(TN ) in the homogeneous 3D Hubbard model attains
its maximal value [26]. S(T ) is largely unaffected by
disordered site energies until ∆µ becomes comparable to
U . This is a consequence of the fact that for temperatures
less than the repulsion U , the Hubbard model has the
character of a Mott insulator in which U blocks transport
of Fermions away from singly occupied sites. Such a
Mott state is immune to the effects of small disorder
∆µ/U . 1. Our calculated entropy S(T ) and double
occupancy D(T ) (see the inset of Fig. 1) confirm this
picture. However, when ∆µ/U & 1 the entropy curves
shift systematically to higher T , reflecting a disorder-
driven decrease in S at constant T . The reduction in S
can be viewed as the transfer of weight in the specific heat
C(T ) to a higher temperature: Disorder suppressing the
peak in C(T ) associated with local magnetic ordering at
the exchange energy scale T ∼ J = 4t20/U , and increasing
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FIG. 2: (Color online) Adiabats of the disordered 3D Hubbard
model along a path which combines an increase of the
interaction strength from U/t0 = 0 to U/t0 = 8 at fixed
∆µ/t0 = 16 followed by a reduction of the site disorder. T/t0
decreases along both trajectories, and, in particular, by about
a factor of three at fixed S/(NkB) ≡ s/kB = ln 2 along the
second path. For s/kB = 0.5, the same reduction brings T
down to near TN .

C(T ) at a higher T that scales like ∆µ due to excitations
arising from the transfer of charge between sites of
different local µi [27]. It is expected that at very low
temperatures, the disorder increases the degeneracy of
the low lying states, and hence the entropy. However, our
results indicate that in the temperature range of interest,
T & TN (the Neél temperature), disorder reduces S.

The family of S(T ) curves in Fig. 1 indicates that if ∆µ

is switched to zero at constant entropy, the temperature
T decreases, in analogy to Pomeranchuk cooling which
occurs in a non-disordered lattice when the ratio of
repulsion to hopping U/t0 is increased adiabatically [40].
For the case of site disorder, the double occupancy shows
a negative slope dD/dT < 0 as seen in the inset of
Fig. 1. At high enough temperatures T & t0, U,∆µ,
up and down spin fermions are uncorrelated, and D
factorizes, D = 〈ni↑ni↓〉 → 〈ni↑〉〈ni↓〉 (= 1/4 at half-
filling). In the clean limit, as T is lowered, the on-site
repulsion eliminates double occupancy, and D falls. At
finite U the presence of quantum fluctuations leads to a
finite double occupancy even as T → 0. Disordered site
energies reduce the penalty for double occupancy from U
to Ueff = U −|µi−µj | so that as ∆µ grows, Ueff becomes
negative. The low T phase consists predominantly of
doubly occupied and empty sites so that in the limit
∆µ/t0 � 1, D approaches 1

2 .

From Fig. 1 we can infer the behavior of T as ∆µ/t0
is lowered adiabatically at fixed U/t0. Optical lattice
experiments, however, typically involve an increase of
U/t0 from zero to its final value. Figure 2 presents the
adiabatic curves of a combined protocol in which the



3

interaction is increased from U/t0 = 0 to U/t0 = 8 in
the presence of fixed disorder ∆µ/t0 = 16, followed by
the suppression of the disorder to ∆µ/t0 = 0. Data are
shown for different values of the starting entropy S/kB .
Figure 2 contains the central observation of our paper: a
significant decrease in temperature results from following
these adiabats. The substantial cooling in the second
part of the path, at fixed U/t0, is implicit in Fig. 1. A
reduction in T/t0 also occurs in the initial turning on of
the interaction, more so in the presence of disorder than
occurs in the clean system [41, 42]. Our QMC results
indicate that beginning at temperatures T/t0 . 2.5
at ∆µ = 16t0 would be sufficient to reach TN by the
time the clean limit is reached. However, an important
question arises: Can the trapped system in the presence
of disorder be cooled down to an initial temperature
T/t0 ∼ 1.5, or possibly even lower, close to what is
initially needed for the clean system to reach the Neél
phase (TN/t0 ∼ 0.35) [42]. Current cooling capabilities
have achieved a final temperature of T/t0 = 0.5 (1.4TN )
for U/t0 ∼ 11 at the trap center [43]. We provide several
suggestions concerning its feasibility in our concluding
remarks.

Since random µi and tij occur together with optical
speckles [44, 45], we also explore the case of bond
disorder. Figure 3 shows S(T ) for nonzero ∆t (and
∆µ = 0). Significant disorder-induced cooling occurs.
It is notable that ∆t/t0 ∼ 1 is sufficient to produce an
effect on the entropy, whereas the scale of random site
energies required to change S is much larger (Fig. 1).
This is a consequence of the fact that random hopping
immediately leads to a range of exchange energies Jij ∼
4t2ij/U which reduces the moment ordering. Random µi
also smear Jij but, since they are added to U in the
energy denominator, initially have only a small effect.
Random hopping thus offers cooling at lower temperature
(entropy) scales for ∆t ∼ t0 than does random chemical
potential, without requiring a ‘threshold value’, ∆µ >
U . Unlike for the chemical potential disorder, the
basic structure of D(T ) remains unaltered for the clean
system [27].

To provide some insight into possible effects of
the inhomogeneous densities resulting from a confining
potential, we show the entropy as a function of density
for the clean system and for chemical potential disorder
∆µ/t0 = 16 and hopping disorder ∆t/t0 = 4 in the
inset of Fig. 3. Although there is some structure to the
curves, entropy is systematically lowered for all densities
as disorder is introduced. Thus disorder cooling is not a
special feature of half-filling, but likely occurs for a broad
range of densities.

We note that there are important questions of principle
which would arise in a full treatment of a trap [41,
42]. QMC calculations for clean systems employed
a set of homogeneous simulations, combined with
the local density approximation (LDA), to understand

0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

  
U/t

0
 = 8.0  
 ∆

t
/t

0
 = 0.0

 ∆
t
/t

0
 = 1.6

 ∆
t
/t

0
 = 3.2

  ∆
t
/t

0
 = 4.0

 

 

S/
(N

k B
)

T

 

 ∆
µ
/t

0
=16.00

 

 

 

S/
(N

k B
)

n

T/t0=1.00

FIG. 3: (Color online) Entropy per site versus temperature
for hopping disorder. Here, disorder cooling is strongest at
lower entropies s ∼ 0.5. The inset shows the entropy as a
function of density of the clean system for ∆µ/t0 = 16 and
∆t/t0 = 4 at fixed U/t0 = 8 and T/t0 = 1. Here, the entropy
is obtained using s(µ, T ) =

∫ µ
−∞ dµ

∂n
∂T
|µ [46], except for the

three data points in black (darker shade) at n = 1, which are
obtained via integrating over β.

how the density, double occupancy, and entropy are
inhomogeneously distributed in a system with smoothly
varying chemical potential. This is a considerably
harder task in the presence of disorder, because the
implementation, and indeed even the validity, of the
LDA is much less straightforward with a rapidly varying
µi or tij . In fact, the LDA has the curious feature
that thermodynamic properties are insensitive to the
specific geometric organization of the sites with the
different chemical potentials: The local entropy sµi is
unaltered for any two systems with the same collection
{µi} whether they are randomly distributed or ordered
spatially in some pattern, a patently unphysical result.

Further Analysis: Observing the onset of long-range
antiferromagnetic (AF) correlations is a central goal of
the field. To see the development of these correlations
as the disorder is turned off, we show in Fig. 4 the
structure factor Sπ as a function of T for different site
(top panel) and bond (bottom panel) disorder strengths.
∆µ > U completely destroys the sharp rise in Sπ, which
occurs here on a 63 lattice at a value close to the bulk
TN/t0 ∼ 0.35 for U/t0 = 8. The suppression of magnetic
order is a consequence of the destruction of the local
moments m2 =

〈
(ni↑ − ni↓)2

〉
= 1 − 2D at half-filling

(see the inset of Fig. 1). Sπ is also suppressed by ∆t

despite the fact that it has only a small effect on m2 [27].
The likely mechanism for the destruction of AF order in
this case is the introduction of fluctuations in the near-
neighbor exchange Jij ∼ 4t2ij/U . As a consequence, of
this anisotropy, singlets can form on the bonds with large
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FIG. 4: (Color online) Antiferromagnetic structure factor Sπ
as a function of T as the site (top) and bond (bottom) disorder
is varied. Site disorder drives Sπ to zero for ∆µ & U by
destroying the magnetic moments m2 = 1 − 2D, whereas
singlet formation on bonds with large Jij ∼ t2ij/U is induced
by sufficiently large ∆t and also destroys the AF long-range
order.

Jij . When many pairs of sites are effectively removed
from the lattice, order is lost. Although both bond and
site disorder reduce Sπ, it is important to emphasize that
low T is reached by turning the disorder off, so that
the terminal state is the sought after regime of large AF
correlations.

Equilibration is crucial to the viability of disorder
cooling. Recent experiments by the DeMarco group [12]
and theory [47] provide evidence that the requisite ∆µ lie
well below the threshold where randomness drives atomic
velocities to zero: Measurements of mass transport show
that the center-of-mass velocity only vanishes above
∆µ/t0 ∼ 21.7 ± 1.6 for U/t0 = 3.8 and ∆µ/t0 ∼
31.7 ± 4.2 for U/t0 = 9.1. The implications of these
results for disorder cooling are considered in Fig. 5,
which shows the final temperature Tf (Ti,∆µ) which
would result from starting at initial temperature Ti and
disorder ∆µ, and turning off randomness adiabatically.
Figure 5 complements Fig. 2 and provides another way
of analyzing the lowering of Tf starting from states at
Ti with ∆µ beyond U/t0 and adiabatically following a
path to ∆µ = 0. The reduction in temperature, Ti − Tf ,
can be as large as 0.65t0 for ∆µ/t0 = 16 and U/t0 = 4,
starting at Ti/t0 = 1 and 1.35t0 for Ti/t0 = 2. The many-
body localization (MBL) critical disorder strengths for
U/t0 = 4.0, 8.0 and 12.0 (denoted by horizontal arrows
in Fig. 5) lie above the range which provides substantial
cooling. These comparisons provide considerable support
to the likelihood that equilibration will still occur in the
regime where disorder-induced cooling is effective.

Implementation and Concluding Remarks: The
scheme proposed here, on its own, is not sufficient to
achieve new quantum phases, and must be accompanied
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FIG. 5: (Color online) Final temperature Tf/t0 resulting from
adiabatically turning off disorder in a system with initial
disorder strength ∆µ/t0, shown on the horizontal axis, and
two different initial temperatures Ti/t0 = 1, 2. As ∆µ

increases beyond U/t0, Tf decreases. The Neél temperatures
TN/t0 = 0.19, 0.35, 0.29 for U/t0 = 4, 8, 12, respectively, are
shown as dashed horizontal lines. The horizontal arrows are
estimates for the onsets of MBL for (from left to right) U/t0 =
4.0, 8.0, 12.0, obtained by linearly interpolating ∆c/12t0 vs
U/12t0 in Fig. 3 of Ref. [12].

by an additional scheme to reduce the entropy in the
initial disordered lattice. Since turning on disorder heats
the gas, this energy must be removed before attempting
to cool more deeply using our method. There have been
no direct attempts to cool in a disordered lattice, but
several schemes are promising. One such method is
sympathetic cooling by another atomic species [48] or
spin-state of the same species [49, 50] that by proper
choice of lattice wavelength or polarization is unaffected
by the lattice. Another approach is to implement
a compensated lattice, where the overall confinement
created by the infrared lattice beams is compensated
by overlapping blue-detuned beams [51]. By tuning the
intensity of the blue-detuned beams the threshold for
evaporation can be brought near the chemical potential,
resulting in very low temperatures [43]. While this
scheme has only been implemented in a clean lattice, it
seems plausible that it can work in any situation where
there is sufficient mobility.

A second approach is to mask the disorder in such a
way that it is applied only to a small spatial subregion
of the entire gas. Through thermal contact, atoms in
this region could be cooled by the larger reservoir region
outside the disordered volume. If the clean gas is then
discarded, one again has the starting point of a disordered
gas at the same initial T as a clean one. Complex
optical potentials to perform these roles can be created
using phase-imprinting spatial light modulators [52, 53]
or micro-mirror devices [54].
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