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In this paper we follow the analysis and protocols of recent experiments, combined with sim-
ple theory, to arrive at a physical understanding of quasi-condensation in two dimensional Fermi
gases. We find that quasi-condensation contains aspects of Berezinskĭı-Kosterlitz-Thouless behav-
ior, including the emergence of a strong zero momentum peak in the pair momentum distribution.
Importantly, the disappearance of this quasi-condensate occurs at a reasonably well defined onset
temperature. The resulting phase diagram, pair momentum distribution, and algebraic power law
decay are compatible with recent experiments throughout the continuum from BEC to BCS.

Understanding two-dimensional (2D) fermionic super-
fluidity has a long history relating to the Mermin-Wagner
theorem [1] and Berezinskĭı [2], Kosterlitz and Thouless
(BKT) physics [3]. More recently it has been viewed
as important for addressing the phase fluctuation pic-
ture (and related pseudogap phenomena) associated with
high-Tc superconductors [4]. Current interest in 2D
bosonic superfluids in ultracold atomic gases has revealed
a general consistency with the BKT transition [5–7]. For
2D fermionic superconductors and superfluids, however,
it should be emphasized that there is some historical
controversy [8] (beginning with Kosterlitz and Thouless
[3]) surrounding observable signatures and applicability
of BKT physics.

Thus recent reports [9, 10] of a form of pair conden-
sation in 2D fermionic gases are particularly exciting.
These follow earlier work addressing the ground state [11]
and the higher temperature (pseudogap) regime, away
from condensation [12]. These latter experiments [12]
emphasized that strong normal state pairing (below an
onset temperature T ∗) is an essential component of 2D
Fermi superfluids, even in the BCS regime. Moreover,
much of the theory invoked to explain recent condensa-
tion experiments [9, 10] was based upon true Bose sys-
tems. A characteristic feature of 2D pair condensation at
finite T is the presence of narrow peaks in the momentum
distribution of the pairs, without macroscopic occupation
of the zero momentum state. Throughout the paper this
will be our definition of “quasi-condensation.” Impor-
tantly, the associated transition temperature was man-
ifested [9] as a sudden change in slope of a normalized
peak momentum distribution for pairs. Moreover, this
quasi-condensation in momentum space was associated
with algebraic decay [10] of coherence in real space.

In this paper we present a theory of a low temperature
2D Fermi gas and show how it reproduces rather well
the results of these recent experiments [9, 10] through
an analysis of the phase diagram, the pair momentum
distribution and algebraic power law decay. Given the
ground breaking nature of the experiments, it is impor-
tant to have an accompanying theoretical study which
follows the same protocols without any adjustments or

phenomenology. Our approach is to be distinguished
from other studies of 2D Fermi gases [4, 13–24]. In partic-
ular, those addressing BKT physics [4, 13, 14, 16, 17, 21],
use existing formulae [25, 26] and determine the unknown
parameters to obtain TBKT

c . In contrast, here we re-
verse the procedure and follow experimental protocols
to thereby provide a new formula, involving composite
bosons, for the transition temperature associated with
quasi-condensation. In the homogeneous case, this is an-
alytically tractable and presented as Eq. (6) below.

Importantly, there is a rather abrupt crossover out of
a quasi-condensed phase at a fairly well defined tem-
perature Tqc. In the BEC regime this matches earlier
theoretical estimates of the BKT transition tempera-
ture which are based on different theoretical formalisms
[4, 13, 14, 16, 17]. We find that Tqc varies continu-
ously with scattering length and, in reasonable agreement
with experiment [9], the transition appears at a slightly
higher temperature for more BCS-like systems. We infer
that the physics driving this quasi-condensation derives
from implications of the Mermin-Wagner theorem; that
is, from the inability to condense in 2D except at zero
temperature. To minimize the free energy, the system re-
mains quasi-condensed for a range of finite temperatures.
Since we, as in Ref. [26], make no reference to vortices we
cannot argue that our observations correspond strictly to
a BKT scenario [3], but we can establish that our findings
follow rather nicely those of recent experiments.

Background theory.− Theoretical studies of the 2D
Fermi gas divide into two classes: those which build on or
extend BCS mean-field theory [4, 13, 14, 16, 17, 24, 27],
which is the largest class, and those (based on t-matrix
schemes) which do not [18–21, 28]. Here we consider a t-
matrix theory belonging to the first class. In the following
overview we omit technical details which are extensively
discussed elsewhere [29, 30], and can also be found in the
Supplemental Material [31] along with a comparison to
other theories.

To describe the Fermi gas, we begin by introducing
a pair propagator Γ(Q), representing a Green’s function
for bosonic, or paired fermionic, degrees of freedom. Here
we define the vector Q = (iΩ,q), where iΩ is a bosonic
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Matsubara frequency at temperature T and q is the pair
momentum. The pair propagator Γ(Q) is chosen so that
Γ−1(0) = 0 at a temperature below a true 3D phase
transition temperature (where µpair ≡ 0) and, impor-
tantly, we impose the condition that this Thouless cri-
terion reproduces the usual mean-field equation deter-
mining ∆ 6= 0. In 2D, where Tc = 0, this equation at
non-zero T is naturally generalized to Γ−1(0) ∝ µpair.
We emphasize ∆ is a pairing gap and not an order pa-
rameter.

A key component of the theory is the inclusion of fluc-
tuations, or bosonic degrees of freedom. As we will show,
fluctuations in 2D are necessarily unable to condense,
thus guaranteeing that µpair will never vanish for any
T > 0. Because Γ(Q) represents a pair propagator, it
can be expanded at small Q into the generic form:

Γ(Q) =
a−1

0

iΩ− Ωq + µpair + iγQ
, (1)

and we associate Ωq ≈ ~2q2/2MB with a pair dispersion
of mass MB . Throughout we find that we can drop the
small lifetime contribution γQ. Note that the small Q
form of the pair propagator is, up to a factor a−1

0 , that
of a Bose gas which has no direct inter-boson interac-
tions, but in which the bosons interact indirectly via the
fermionic medium.

Performing the sum over bosonic Matsubara frequen-
cies iΩ gives the momentum distribution of bosons de-
fined through nB (q) = −a0

∑
iΩ Γ(Q) = b (Ωq − µpair),

where b(x) =
(
ex/kBT − 1

)−1
is the Bose-Einstein distri-

bution function. From here it is natural to define a boson
number density nB through nB ≡

∑
q nB (q) = a0∆2,

where in the second equality we have associated the num-
ber density with the pairing gap. This association is
based on the self-energy [29, 30] and addressed in detail
in the Supplemental Material [31].

With this formalism we can now determine the un-
knowns that appear in Eq. (1); we use the generalized gap
equation Γ−1(0) = a0µpair, the bosonic number equation
for nB , and the usual BCS number equation for fermionic
density n, given respectively by,∑

k

[
1− 2f (Ek)

2Ek
− 1

2εk + εB

]
= a0µpair, (2)

∑
q

b

(
~2q2

2MB
− µpair

)
= a0∆2, (3)

∑
k

[
1− ξk

Ek
(1− 2f (Ek))

]
= n, (4)

to fully determine our many-body parameters, ∆, µ, and
µpair. Here we define the Fermi-Dirac distribution func-

tion f (x) =
(
ex/kBT + 1

)−1
, the single particle disper-

sion ξk = ~2k2/2m − µ for a fermion of mass m, mo-
mentum k and chemical potential µ, and the Bogoli-
ubov dispersion with gap ∆ which is given by Ek ≡

√
ξ2
k + ∆2. We have regularized the gap equation in

Eq. (2) by introducing a two particle bound state energy
εB = ~2/ma2

2D [24]. To match with experiment, we use
a quasi-2D scattering length a2D parameterized through
ln(kFa2D). We assume throughout that the transverse
confinement is small enough to neglect corrections due
to a finite transverse trapping length [32].

At T = 0, we can use the well known solution µ =
εF − εB/2, ∆ =

√
2εF εB [24] along with µpair = 0; here

εF = π~2n/m is the usual Fermi energy. At finite tem-
peratures, Eq. (3) can be inverted exactly to give:

µpair = kBT ln
(

1− e−nBλ
2
B

)
, (5)

where λB =
√

2π~2/MBkBT is the thermal wavelength
for the composite bosons. The pair chemical potential
therefore crucially relies on the bosonic phase-space den-
sity DB = nBλ

2
B ∼ 1/T . At low temperature, DB � 1

and we find an exponential dependence µpair/kBT ∼
−e−nBλ

2
B . On the other hand, at high temperatures

DB � 1 and µpair ∼ −T lnT which can be substantial.
Analysis.− The behavior of the pair chemical poten-

tial, which we find to be finite and continuous at all
non-zero temperatures, underlies the concept of quasi-
condensation. That is, there is no true phase tran-
sition but rather an abrupt departure from a (quasi-
condensed) phase in which µpair is exponentially small
to one in which it becomes moderately large as T in-
creases. We introduce a tolerance factor ε which de-
fines an onset of appreciable µpair. This is expressed via
the fugacity z = eµpair/kBT . The departure point from
the low temperature exponential occurs when the slope
of z with respect to phase-space density is of order ε:
dz(DB)/dDB ∼ ε. This introduces a scale for a smoothed
out transition between phases set by a weak (logarithmic)
dependence on this tolerance factor DB = ln(1/ε).

Experimentally [9] this quasi-condensation transition
is reflected in the momentum distribution of the pairs,
nB(q) via a narrow peak at q = 0 which satisfies
nB(q = 0) ≡ nB (0) = eDB −1. Thus, we can rewrite the
crossover constraint on the fugacity as dnB(0)/dDB ∼
1/ε. We find that a threshold in µpair enters as a slightly
rounded knee in nB(0). We point out an analogy between
this quasi-condensation onset at Tqc with the observed
[12] pseudogap onset temperature T ∗ [30]. Both repre-
sent abrupt and quantifiable departure temperatures, not
associated with sharp phase transitions. Estimates of on-
set quantities such as T ∗, are based on the temperatures
at which the deviations become noticeable, say of the
order of a few percent.

Using the plots presented in Fig. 1, a graphical anal-
ysis of µpair suggests that we take ε as roughly 1%, re-
flecting an accuracy in Tqc ≈ ±15%. As discussed in the
Supplemental Material [31], a more detailed analysis of
fitting functions applied to the correlation function (see
Fig. 3, below), also reinforces this estimate of ε ≈ 1%.
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FIG. 1. (a) Quasi-condensation as illustrated via the pair chemical potential, µpair, as a function of temperature at ln(kF a2D) =
±0.5. Instead of a phase transition there is an abrupt departure from a (quasi-condensed) phase in which µpair is exponentially
small to one in which it becomes noticeably large. The logarithmic scale inset shows that µpair vanishes only at T = 0.
(b) Normalized momentum distribution at T/TF = 0.07 and a2D ≈ 0.15µm [9, 31]. In the main plot, the red (solid) curve
shows the trap-integrated pair momentum distribution. The black (dashed) curve is the trap-integrated interpolation from a
corresponding Boltzmann distribution. The inset shows the same quantity from Ref. [9]; the dashed line is a Boltzmann fit to
the experimental data at large q. (c) Peaks in the normalized momentum density as functions of temperature for a range of
ln(kF a2D). The black solid circles are Tqc determined from Eq. (6). The inset plots experimental data (blue-dots) along with the
experimentally determined Tc (black circle) [9]; this is directly compared with theory (red-solid) for closely matched parameters
(a2D ≈ 0.15µm). Where relevant, the arbitrary unit scales provide a direct comparison of theory and experiment [31].

This yields

kBTqc ≈
π

2.3

~2nB(Tqc)

MB(Tqc)
, (6)

and corresponds to DB ≈ 4.6. These values of DB are
not too different from the Monte Carlo result [33] for a
true bosonic gas at the superfluid transition, quoted in
Ref. [10] as DB ≈ 4.9 (which corresponds to our ε ≈
0.7%.)

In the deep-BEC regime (where nB/MB = n/4m)
Eq. (6) yields kBTqc ≈ 1

9εF , which is close to estimates in
the literature given by kBT

BKT
c = 1

8εF . Importantly, the
present expression for Tqc applies throughout the BCS-
BEC crossover. Towards the BCS limit the number of
bosons decreases, but this is compensated largely in the
onset temperature by the decrease in bosonic effective
mass.

We now extend these analytic arguments to account for
trap effects via the local density approximation (LDA).
These provide only a minor quantitative change in the
general qualitative picture. To apply the LDA, we rewrite
our equations in terms of the the local position R, us-
ing the transformations µ → µ (R) = µ0 − 1

2mω
2R2,

∆ → ∆ (R), and similarly for all derived quantities;
the total atom number is fixed to N =

∫
n(R)d2R.

We also define a trap-integrated momentum distribu-
tion: n̄B(k) =

∫
nB(k,R)d2R. When comparing to ex-

perimental values, we chose a trapping frequency ω =
2π × 18Hz for a characteristic value of N = 105 atoms;
this corresponds to TF ∼ 270nK. For further details of
units and the LDA see the Supplemental Material [31].

Comparison with experiment.− We now compare our
theory with the recent experimental results in Refs. [9,
10], using our numerical results for the trapped case as

“data” analogous to the experiment. In order to probe
the momentum distribution of bosonic pairs at low tem-
peratures, in Fig. 1(a) we plot the pair chemical potential
versus temperature for two values of ln(kFa2D) = ±0.5,
along with an enlarged plot of |µpair(T )| which is pre-
sented in the inset. The dots illustrate the temperatures
associated with the onset; here µpair begins to apprecia-
bly deviate from zero, thus marking the transition out of
the quasi-condensed state.

Figure 1(b) shows an example of the trap-integrated
pair momentum distribution n̄B(q) at T < Tqc. The
small chemical potential µpair in Fig. 1(a) results in a
sharply peaked distribution n̄B(q) as q → 0. The in-
set presents experimental data [9]. While the agreement
with experiment is satisfactory, the differences between
experiment and theory suggest that the absolute value of
µpair we find is somewhat too small.

Finally, we focus on the ratio of the peak magni-
tude n̄B(0) of this momentum distribution normalized
to the peak number density in the center of the trap,
n0 ≡ n(R = 0), following the experimental protocol [9].
This is plotted for three different values of ln (kFa2D) in
Fig. 1(c) with the dots indicating the knee (assuming a
one percent tolerance factor). This yields our onset tem-
perature in a trap as a function of scattering length. The
inset plots the experimental results (indicating their in-
ferred onset temperature) which we overlay on the theory
for comparison. For our “data” the transition region is
slightly more rounded making it somewhat more difficult
to establish a precise onset using only the momentum
distribution. Nevertheless the behavior of both around
the “knee” is not too dissimilar.

We next use this analysis to obtain the phase dia-
gram as a function of interaction strengths investigated
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FIG. 2. (a) The phase diagram associated with the quasi-
condensation onset (black curve), Tqc, as a function of the
scattering length ln(kF a2D). The colored shading represents
the non-thermal fraction (see text and Fig. 1(b)). The bosonic
number density nB(Tqc), and pair mass MB(Tqc), at Tqc are
shown in (b) and (c) respectively. All quantities are calculated
from R = 0 data in the LDA.

in experiment. The results are shown in Fig. 2(a) plot-
ted against ln(kFa2D). Figures 2(b) and 2(c) indicate
the numerator (nB) and denominator (MB) components
of Tqc as shown in Eq. (6) as a function of scattering
length. The color coding indicates the non-thermal frac-
tion which is found from Fig. 1(b) as the area between
the momentum distribution (solid curve) and its high
temperature asymptote (dashed line). As the scattering
length is increased, the transition temperature begins to
drop before rising to a local maximum and then falling off
in the deep BCS regime. While the values are rather sim-
ilar, this non-monotonic behavior is not as directly seen
in experiment, although it is suggested in their plots of
the non-thermal fraction. It should also be noted that
our theory for the transition temperature is applicable
across the entire BEC-BCS spectrum, rather than as two
endpoint cases as often studied [13, 21].

Finally, in Fig. 3 we present the correlation function
g1(r) determined from the Fourier transform of the trap
integrated momentum distribution n̄B(q), again follow-
ing the experimental protocol [10]. We fit to a power
law for an intermediate range of r corresponding roughly
to that used in the experimental data [10]. We find the
power law regime appears slightly more extended in ex-
periment than in theory. With our analytic insight we be-
lieve there may be better fits to our “data” based directly
on an evaluation of our q → 0 momentum distribution.
These are discussed in the Supplemental Material [31].
Nevertheless, following experiment we find a reasonable
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FIG. 3. (a) Theoretical correlation function, g1(r), in the
LDA. We consider three different temperatures at a scattering
length a2D ≈ 0.15µm [10, 31], where Tqc = 0.1TF . The red,
blue, and black curves correspond to, T/Tqc = 0.6, T/Tqc =
0.9, and T/Tqc = 1.2 respectively. For T < Tqc (T > Tqc),
the dashed lines correspond to a power law (exponential) fit
to the theoretical curve. (b) Experimentally measured [10]
correlation function g1(r). Experimental temperature ratios
T/Tc (as defined in Ref. [10]) closely match T/Tqc for the
theoretical curve of the same color.

fit to a power law at low temperature, g1(r) ∼ 1/rη, and
a crossover to an exponential fit at higher temperatures,
g1(r) ∼ e−r/ξ. This crossover temperature is very close to
Tqc as found from Eq. (6). Our power laws, which appear
to reflect trap effects, lie in the range of 0.75 < η < 1.5,
close to the power laws observed in the experiment of
0.6 < η < 1.4 [31].
Conclusions.− The favorable comparisons between

theory and experiment in Figs. 1−3 provide helpful in-
sights into the behavior of 2D Fermi gases. Central
to our picture is the relation between the zero momen-
tum peak in the pair distribution function and the small
pair chemical potential µpair. As consistent with the
Mermin-Wagner theorem, µpair is shown to never van-
ish except at zero temperature. We argue that it is this
inability to fully condense in 2D which ultimately drives
quasi-condensation. Importantly, with increasing tem-
perature there is a rather abrupt transition from this
quasi-condensed phase.

Our approach should be contrasted with contributions
to the theoretical literature which address BKT physics
[4, 13, 14, 16, 17, 21], by solving for the phase stiffness
parameters that appear in the Nelson-Kosterlitz formu-
lae [25] for the BKT transition temperature. We follow
the experimental procedure to provide a new formula (see
Eq. (6)) for the transition temperature associated with
quasi-condensation. We stress that our expression is as-
sociated with composite bosons whose mass and number
density vary significantly and continuously from BCS to
BEC.
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