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The surface of a three-dimensional topological electron system often hosts symmetry-protected
gapless surface states. With the effect of electron interactions, these surface states can be gapped
out without symmetry breaking by a surface topological order, in which the anyon excitations carry
anomalous symmetry fractionalization that cannot be realized in a genuine two-dimensional system.
We show that for a mirror-symmetry-protected topological crystalline insulator with mirror Chern
number n = 4, its surface can be gapped out by an anomalous Z2 topological order, where all anyons
carry mirror symmetry fractionalization M2 = −1. The identification of such anomalous crystalline
symmetry fractionalization implies that in a two-dimensional Z2 spin liquid the vison excitation
cannot carry M2 = −1 if the spinon carries M2 = −1 or a half-integer spin.

The advent of topological insulators (TIs) [1–3] and
topological superconductors (TSCs) [4] has greatly
broadened our understanding of topological phases in
quantum systems. While the concepts of TIs and
TSCs originates from topological band theory of non-
interacting electrons/quasiparticles, recent theoretical
breakthroughs [5–10] have found that interactions can in
principle change fundamental properties of these topo-
logical phases dramatically, thus creating a new dimen-
sion to explore. In particular, interactions can drive the
gapless Dirac fermion surface states of three-dimensional
(3D) TIs and TSCs into topologically-ordered phases
that are gapped and symmetry-preserving. Nonetheless,
such a surface manifests the topological property of the
bulk in a subtle but unambiguous way: its anyon exci-
tations have anomalous symmetry transformation prop-
erties, which cannot be realized in any two-dimensional
(2D) system with the same symmetry.

Given the profound consequences of interactions in
TIs and TSCs, the effect of interactions in topologi-
cal phases protected by spatial symmetries of crystalline
solids, commonly referred to as topological crystalline in-
sulators (TCIs) [11], is now gaining wide attention. A
wide array of TCI phases with various crystal symme-
tries have been found in the framework of topological
band theory [12, 13]. One class of TCIs has been pre-
dicted and observed in the IV-VI semiconductors SnTe,
Pb1−xSnxSe and Pb1−xSnxTe [14–17]. The topologi-
cal nature of these materials is warranted by a partic-
ular mirror symmetry of the underlying rocksalt crystal,
and is manifested by the presence of topological surface
states on mirror-symmetric crystal faces. Remarkably,
there surface states were found to become gapped un-
der structural distortions that break the mirror symme-
try [18, 19], confirming the mechanism of crystalline pro-
tection unique to TCIs [14].

The study of interacting TCIs has just begun. A recent
work by Isobe and Fu [20] shows that in the presence of
interactions, the classification of 3D TCIs protected by

mirror symmetry (i.e., the SnTe class) reduces from being
characterized by an integer known as the mirror Chern
number [21] (hereafter denoted by n) to its Z8 subgroup.
This implies that interactions can turn the n = 8 surface
states, which consists of 8 copies of 2D massless Dirac
fermions with the same chirality, into a completely triv-
ial phase that is gapped, mirror-symmetric and without
intrinsic topological order. It remains an open question
what interactions can do to TCIs with n 6= 0 mod 8. In
this work, we take the first step to study strongly inter-
acting TCI surface states for the case n = 4 mod 8.

Our main result is that the surface of a 3D TCI with
mirror Chern number n = 4 mod 8 can become a gapped
and mirror-symmetric state with Z2 topological order.
Remarkably, the mirror symmetry acts on this state in
an anomalous way that all three types of anyons carry
fractionalized mirror quantum number M̃2 = −1 (in
this paper we use M̃ to represent the projective repre-
sentation of mirror symmetry M acting on an anyon),
which cannot be realized in a purely 2D system. Fur-
thermore, the anomalous mirror symmetry fractionaliza-
tion protects a two-fold degeneracy between two mirror-
symmetry-related edges. Such anomalous mirror symme-
try fractionalization cannot be realized in a 2D system,
including a 2D Z2 spin liquid state [22]. Hence our find-
ing constraints the possible ways of fractionalizing the
mirror symmetry in a 2D Z2 spin liquid [23, 24]. Brief
reviews of 3D TCI, 2D Z2 spin liquids and their edge
theory are available in the Supplemental Material [25].

Non-interacting TCIs. We begin by considering non-
interacting TCIs protected by the mirror symmetry x→
−x. With the mirror symmetry, the extra U(1) symmetry
in a TCI does not change the classification in 3D com-
paring to a mirror protected topological crystalline su-
perconductor. Hence for convenience we choose a TCI as
our starting point, although the U(1) symmetry plays no
role in this work. As we will explain in Sec. II of the Sup-
plemental Material, in order to produce an anomalous Z2

surface topological order, the mirror operation must be
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defined as a Z2 symmetry with the property M2 = 1.
In our previous works on spin-orbit coupled systems,
the mirror operation M ′ acts on electron’s spin in addi-
tion to its spatial coordinate, which leads to M ′2 = −1.
Nonetheless, one can redefine the mirror operation by
combining M ′ with the U(1) symmetry of charge conser-
vation c → ic, which restores the property M2 = 1. We
note that without the U(1) symmetry only M satisfy-
ing M2 = +1 protects nontrivial topological crystalline
superconductors.

The mirror TCIs are classified by the mirror Chern
number n, defined for single-particle states on the mirror-
symmetric plane kx = 0 in the 3D Brillouin zone. The
states with mirror eigenvalues 1 and −1 form two dif-
ferent subspaces, each of which has a Chern number de-
noted by n+ and n− respectively. This leads to two in-
dependent topological invariants for non-interacting sys-
tems with mirror symmetry: the total Chern number
nT = n++n− and the mirror Chern number n = n+−n−.

The TCI with a nontrivial mirror Chern number n has
gapless surface states consisting of n copies of massless
Dirac fermions, described by the following surface Hamil-
tonian

Hs = v

n∑
A=1

ψ†A(kxσy − kyσx)ψA, (1)

where the two-dimensional fermion fields ψA(x, y) trans-
forms as the following under mirror operation:

M : ψA(x, y)→ σxψA(−x, y). (2)

The presence of mirror symmetry (2) forbids any Dirac

mass term ψ†AσzψB . As a result, the surface states de-
scribed by (1) cannot be gapped by fermion bilinear
terms, for any flavor number n.

We emphasize that the above Dirac fermions on the
surface of a 3D TCI cannot be realized in any 2D sys-
tem with mirror symmetry, as expected for symmetry-
protected topological phases in general. According to the
Hamiltonian (1), the surface states with kx = 0 within
a given mirror subspace are chiral as they all move in
the same direction [14]. In contrast, in any 2D system
single-particle states within a mirror subspace cannot be
chiral (this is demonstrated with a 2D lattice model in
Sec. V of the Supplemental Material).
U(1) Higgs phase and Z2 topological order In this work

we study interacting surface states of TCIs with n = 4.
Starting from four copies of Dirac fermions in the non-
interacting limit, we will introduce microscopic interac-
tions and explicitly construct a Z2 topologically-ordered
phase on the TCI surface, which is gapped and mirror
symmetric.

Our construction is inspired by the work of Senthil and
collaborators [26, 27] on fractionalized insulators. We
construct on the surface of a n = 4 TCI a Higgs phase
with an xy-order parameter 〈b〉 6= 0, which is odd under

the mirror symmetry and gaps the Dirac fermions. Next,
we couple these gapped fermions to additional degrees of
freedom aµ that are introduced to mimic a U(1) gauge
field. This gauge field aµ plays three crucial roles: (i) the
coupling between matter and aµ restores the otherwise
broken U(1) symmetry, and thus the mirror symmetry
along with it; (ii) the Goldstone mode is eaten by the
gauge boson and becomes massive; (iii) since the xy-order
parameter carries U(1) charge-2, the U(1) gauge group is
broken to the Z2 subgroup in the Higgs phase. Because
of these properties, the Higgs phase thus constructed is a
gapped and mirror-symmetric phase with Z2 topological
order.

We now elaborate on the construction (details of this
construction can be found in Sec. III of the Supple-
mental Material). First, we relabel the fermion flavors
A = 1, . . . , 4 using a spin index s =↑, ↓ and a U(1)-charge
index a = ± (unrelated to the electric charge). We take
fermion interactions that are invariant under both the
SU(2) spin rotation and the U(1) rotation

U(1) : ψas → eiaθψas, a = ± (3)

Moreover, we introduce a boson field b(x, y) that carries
U(1)-charge 2 and is odd under mirror symmetry:

U(1) : b→ ei2θb, M : b(x, y)→ −b(−x, y), (4)

and couple this boson to the massless Dirac fermions as
follows

Hbf = V b†ψ†asτ
−
abσzψbs + h.c.. (5)

When these bosons condense, 〈b〉 6= 0 spontaneously
breaks both the U(1) and mirror symmetry, and gappes
out the fermions.

Finally, we introduce another boson vector field
aµ(x, y), which couples to b and ψas through minimal
coupling. An effective theory of this system has the fol-
lowing form,

L =− iψ†sαµ(∂µ + iaµτz)ψs + (bψ†sτ
+σzψs + h.c.)

+
1

2g
|(∂µ − 2iaµ)b|2 + r|b|2 + u|b|4 + FµνF

µν ,
(6)

where the matrices α0 = 1, αx = σy and αy = σx.
Furthermore, we add to the effective action an inter-
ation term UN2, where N = ψ†τzψ + 2b†b − ∇ · E
(Ei = F0i = ∂0ai − ∂ia0 is the electric field strength).
In the limit of U →∞, this enforces the local constraint
N = 0. As a result, the bare fermion ψs and boson b
are no longer low energy excitations, since adding them
to the ground state violates the constraint N = 0 and
costs an energy U . Therefore in the low energy effective
model ψs and b must be screened by the gauge field aµ
and become quasiparticles ψ̃as = ψase

iaθ and b̃ = be2iθ,
where the operator einθ creates n gauge charge of aµ and
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restores the constraint N = 0. In terms of these quasi-
particles the effective theory becomes

L =− iψ̃†sαµ(∂µ + iaµτz)ψ̃s + (b̃ψ̃†sτ
+σzψ̃s + h.c.)

+
1

2g
|(∂µ − 2iaµ)b̃|2 + r|b̃|2 + u|b̃|4 + FµνF

µν ,
(7)

Furthermore a U(1) gauge symmetry emerges in the low
energy Hilbert space defined by the local constraint N =
0 [28], Specifically the constraint is the Gauss law and it
restricts the low energy Hilbert space to states that are
invariant under the gauge transformation

Uφ : ψ̃s → eiφτz ψ̃s, b̃→ b̃e2iφ, aµ → aµ − ∂µφ. (8)

In this effective theory with the emergent U(1) gauge
field, condensing the boson b̃ no longer breaks the global
U(1) and the mirror symmetries, as it instead breaks the
U(1) gauge symmetry to Z2. Naively the mirror sym-
metry maps 〈b̃〉 to −〈b̃〉. However these two symmetry
breaking vacuua are equivalent because they are related
by the gauge symmetry transformation Uπ/2 : b̃ → −b̃.
This restoration of mirror symmetry becomes clearly
manifested if we assume that b̃ and ψ̃s transforms projec-
tively under mirror symmetry with the additional U(1)
gauge transformation Uπ/2,

M̃ : ψ̃s(r)→ iτz ⊗ σxψ̃s(r′); b̃(r)→ b̃(r′). (9)

This Higgs phase obtained by condensing charge-2 b̃
field indeed has a Z2 topological order when the num-
ber of Dirac fermions is n = 4 [10, 29]. This can be
understood by identifying the Bogoliubov quasiparticle
ψ̃ and vortices as the anyons e, m, and ε (see Sec. II of
the Supplemental Material for the definition of the nota-
tion) in the Z2 topological order. ψ̃ becomes the ε anyon
as both are fermions. As the Higgs field gaps out four
Dirac fermions, there are four Majorana fermion, or two
complex fermion zero modes in each vortex core. Hence
there are two types of vortices, whose core has even or
odd fermion parity, respectively. In the case of n = 4 it
can be shown that the vortices carry Bose statistics (see
Sec. IV of the Supplemental Material for the details),
and they are mapped to the m and e anyons in the Z2

topological order, respectively.
Mirror symmetry fractionalization Now we consider

how the mirror symmetry acts in the Z2 spin liquid phase
described by Eq. (7). In this effective theory, the ψ̃ field
is the fermionic anyon ε. Eq. (9) implies that it carries
M̃2 = −1.

Next, we consider how the mirror symmetry acts on
the m anyon, which is a vortex of the Higgs field where
all core states are empty. Since the mirror symmetry pre-
serves the Higgs field 〈b̃〉 but maps x to −x, it maps a
vortex to an antivortex. Therefore we consider a mirror-
symmetric configuration with one vortex and one antivor-
tex, as shown in Fig. 1(a). The symmetry fractionaliza-
tion of M̃2 = ±1 can be detected from the M parity of
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 ̃ and vortices as the anyons e, m, and ✏ (see Sec. II of
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as both are fermions. As the Higgs field gaps out four
Dirac fermions, there are four Majorana fermion, or two
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there are two types of vortices, whose core has even or
odd fermion parity, respectively. In the case of n = 4 it
can be shown that the vortices carry Bose statistics (see
Sec. IV of the Supplemental Material for the details),
and they are mapped to the m and e anyons in the Z2
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how the mirror symmetry acts in the Z2 spin liquid phase
described by Eq. (7). In this e↵ective theory, the  ̃ field
is the fermionic anyon ✏. Eq. (9) implies that it carries
M̃2 = �1.

Next, we consider how the mirror symmetry acts on
the m anyon, which is a vortex of the Higgs field where
all core states are empty. Since the mirror symmetry pre-
serves the Higgs field hb̃i but maps x to �x, it maps a
vortex to an antivortex. Therefore we consider a mirror-
symmetric configuration with one vortex and one antivor-
tex, as shown in Fig. 1(a). The symmetry fractionaliza-
tion of M̃2 = ±1 can be detected from the M parity of
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FIG. 1. (a) A vortex and an antivortex. The direction of

the arrow represents the phase of the Higgs field hb̃i. The
doted line is the mirror axis. (b) Illustration of the fermion
spectrum flow from the left to the right as we create a vortex-
antivortex pair from the vacuum and move them far apart.
In this process four vortex core states are separated from the
bulk spectrum, two from the conducting band and two from
the valence band, and become degenerate zero modes. As
illustrated in the inset, the core states are two-fold degenerate
with spin s = ±1.

the fermion wave function with such a vortice-antivortex
pair [30]: for two bosonic vortices, the mirror parity
equals to M̃2.

From Eq. (7) we get the fermion Hamiltonian

H = v ̃†
s (kx�y � ky�x)  ̃s +  ̃†

s(hb̃i⌧+ + hb̃i⇤⌧�)�z ̃s.
(10)

It has a particle-hole symmetry ⌅ :  ̃ ! �z ̃ which
mapps H to ⌅H⌅ = �H. This implies that its spectrum
is symmetric with respect to zero. Assume that the di-
mension of the whole Hilbert space is 4N , there are 2N
states with positive energy and 2N states with negative
energy. For the vortex configuration in Fig. 1(a), there
are four complex zero modes, two from each vortex core,
which are all unoccupied. Therefore excluding these four
states there are 2N�2 states with negative energy, which
are all occupied in the fermion wave function.

Next, we consider the mirror eigenvalues of these
2N�2 occupied fermion states. Since  ̃ carries M̃2 = �1,
each state has mirror eigenvalue �M = ±i. Because both
H, ⌅ and M are diagonal in pseudospin s =", #, all oc-
cupied states are pseudospin doublets, and two states in
each doublet have the same �M . Hence the mirror eigen-
value of all occupied states, organized as N � 1 doublets,
is (�1)N�1 = �1. Therefore the wave function of two
empty vortices is odd under mirror symmetry, which im-
plies that the e particle has the symmetry fractionaliza-
tion M̃2 = �1. Combining the results that both e and
✏ carry M̃2 = �1, we conclude that m anyon also has
M̃2 = �1 (see the discussion in Sec. II of the Supple-
mental Material).

In summary, the gapped Z2 surface state we con-
structed has an anomalous mirror symmetry fractional-
ization that both types of anyons carry M̃2 = �1, which
cannot be realized in a genuine 2D system. For compar-
ison, it is shown in Sec. II of the Supplemental Material
that applying the same construction to a 2D lattice model
results in a Z2 phase with a di↵erent mirror symmetry

FIG. 1. (a) A vortex and an antivortex. The direction of

the arrow represents the phase of the Higgs field 〈b̃〉. The
doted line is the mirror axis. (b) Illustration of the fermion
spectrum flow from the left to the right as we create a vortex-
antivortex pair from the vacuum and move them far apart.
In this process four vortex core states are separated from the
bulk spectrum, two from the conducting band and two from
the valence band, and become degenerate zero modes. As
illustrated in the inset, the core states are two-fold degenerate
with spin s = ±1.

the fermion wave function with such a vortice-antivortex
pair [30]: for two bosonic vortices, the mirror parity
equals to M̃2.

From Eq. (7) we get the fermion Hamiltonian

H = vψ̃†s (kxσy − kyσx) ψ̃s + ψ̃†s(〈b̃〉τ+ + 〈b̃〉∗τ−)σzψ̃s.
(10)

It has a particle-hole symmetry Ξ : ψ̃ → σzψ̃ which
mapps H to ΞHΞ = −H. This implies that its spectrum
is symmetric with respect to zero. Assume that the di-
mension of the whole Hilbert space is 4N , there are 2N
states with positive energy and 2N states with negative
energy. For the vortex configuration in Fig. 1(a), there
are four complex zero modes, two from each vortex core,
which are all unoccupied. Therefore excluding these four
states there are 2N−2 states with negative energy, which
are all occupied in the fermion wave function.

Next, we consider the mirror eigenvalues of these
2N−2 occupied fermion states. Since ψ̃ carries M̃2 = −1,
each state has mirror eigenvalue λM = ±i. Because both
H, Ξ and M are diagonal in pseudospin s =↑, ↓, all oc-
cupied states are pseudospin doublets, and two states in
each doublet have the same λM . Hence the mirror eigen-
value of all occupied states, organized as N − 1 doublets,
is (−1)N−1 = −1. Therefore the wave function of two
empty vortices is odd under mirror symmetry, which im-
plies that the e particle has the symmetry fractionaliza-
tion M̃2 = −1. Combining the results that both e and
ε carry M̃2 = −1, we conclude that m anyon also has
M̃2 = −1 (see the discussion in Sec. II of the Supple-
mental Material).

In summary, the gapped Z2 surface state we con-
structed has an anomalous mirror symmetry fractional-
ization that both types of anyons carry M̃2 = −1, which
cannot be realized in a genuine 2D system. For compar-
ison, it is shown in Sec. II of the Supplemental Material
that applying the same construction to a 2D lattice model
results in a Z2 phase with a different mirror symmetry
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fractionalization which is not anomalous.
Mirror anomaly. The anomalous crystal symmetry

fractionalization presented in the surface topological or-
der implies a symmetry protected topological degener-
acy associated with the edges of the surface topological
ordered region. This mirror anomaly is a remnant of
the anomalous surface fermion modes in the free fermion
limit. To see this, we consider the setup presented in
Fig. 2, in which the Z2 surface topologically ordered state
is terminated at two edges symmetric with respect to the
mirror plane, by two regions with opposite 〈b〉 = ±1 on
either side of the mirror plane, respectively.

x = 0

〈b〉 = −1 〈b〉 = +1M

FIG. 2. Two mirror-symmetric edges of a Z2 surface topolog-
ical order. The mirror symmetry maps x to −x with respect
to the mirror plane marked by the red disk at x = 0. The
surface topological order, marked by the shade, terminates at
edges against two ordered regions with 〈b〉 = ±1, respectively.

This setup itself does not break the mirror symmetry,
and all local excitations can be gapped everywhere on
the surface. Particularly since the Z2 topological order
is not chiral, its edge can be gapped out by condensing
either e or m anyons on the edge [31]. The edges next to
an ordered phase with 〈b〉 6= 0 are e-edges, as condensing
e breaks the global U(1) symmetry. A Z2 spin liquid
state on a infinite cylinder has four degenerate ground
states |Ψa〉, each has one type of anyon flux a = 1, e,m, ε
going through the cylinder. On a finite cylinder with two
e-edges, only |Ψ1〉 and |Ψe〉 remain degenerate, because
adding an m or ε anyon on the edge costs a finite energy.
In a generic Z2 state this degeneracy can be further lifted
by tunneling an e anyon between the two edges, Ht =
λe†Le

†
R + h. c., where e†L,R creates two e anyons on the

two edges, respectively. However, the e anyon carries
M̃2 = −1, therefore the tunneling term Ht is odd under
mirror and thus forbidden by M . As a result, this two-
fold topological degeneracy is protected by the mirror
symmetry even in the limit of L → 0. This argument
is formulated using the effective edge Lagrangian in the
Supplemental Material.

In the limit of L → 0, this topological degeneracy be-
comes a local degeneracy protected by the mirror sym-
metry. Therefore if the Z2 topological order is killed
by collapsing two gapped edges, the ground state is ei-
ther gapless or mirror-symmetry-breaking, and this can-
not be avoided regardless of edge types because all types
of anyons have M̃2 = −1. This topological degeneracy
reveals the anomalous nature of this mirror symmetry
fractionalization. Furthermore, if we collapse two gapless
edges of the Z2 state, the edges remain gapless because
the anyon tunneling is forbidden by M . Hence we get a

gapless domain wall with central charge c = 1 + 1 = 2,
which recovers the edge with four chiral fermion modes in
the aforementioned free fermion limit. This is explained
in more details in Sec. VI of the Supplemental Material.
Conclusion. In this work we show that the surface of

a 3D mirror TCI with mirror Chern number n = 4, con-
taining four gapless Dirac fermion modes in the free limit,
can be gapped out without breaking the mirror symme-
try by a Z2 topological order. This surface Z2 topological
order has an anomalous mirror symmetry fractionaliza-
tion in which all three types of anyons carry fractional-
ized mirror symmetry quantum number M̃2 = −1, and
such a topological order cannot be realized in a purely
2D system.

Our finding also puts constraints on possible ways to
fractionalize the mirror symmetry in a 2D Z2 quantum
spin liquid [24, 32]. The result of this work indicates that
the combination that both the e andm carry the fraction-
alized M̃2 = −1 is anomalous and cannot be realized in a
2D Z2 spin liquid. Furthermore, our result can be easily
generalized to also rule out the combination that the e
anyon carries spin- 12 and m anyon carries M̃2 = −1 [33],

because if e carries M̃2 = +1 we can define a new mirror
symmetry M ′ = MeiπS

z

, for which both e and m car-
ries (M̃ ′)2 = −1 and therefore this combination is also
anomalous. In summary, our finding implies that the vi-
son must carry M̃2 = +1 in a Z2 spin liquid where the
spinon carries a half-integer spin.
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