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Abstract

We investigate the properties of the collective plasmon excitations in Dirac semimetals by using

the methods of relativistic field theory. We find a strong and narrow plasmon excitation whose

frequency is in the terahertz (THz) range which may be important for practical applications. The

properties of the plasmon appear universal for all Dirac semimetals, due to the large degeneracy

of the quasi-particles and the small Fermi velocity, vF � c. This universality is closely analo-

gous to the phenomenon of “dimensional transmutation”, that is responsible for the emergence of

dimensionful scales in relativistic field theories such as Quantum Chromodynamics.

PACS numbers:
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The recent experimental discovery of Cd3As2 [1, 2] and Na3Bi [3] Dirac semimetals en-

ables the study of the properties of chiral quasi-particles in three spatial dimensions. As

demonstrated by photoemission [1–3], Dirac semimetals are characterized by a linear dis-

persion relation for fermion quasi-particles, and thus represent three dimensional analogs of

graphene. While the distinctive behavior of chiral fermions (e.g. Klein tunneling) is already

evident in two dimensional graphene, the physics of chirality in three dimensions opens a

number of new possibilities. In particular, the presence of the chiral anomaly in (3 + 1)

dimensional theory should make it possible to observe “Chiral Magnetic Effect (CME)” —

a non-dissipative current induced by parallel electric and magnetic fields — in such systems;

for a review, see [4]. See Refs.[5–7] for other studies of chiral anomaly in Weyl semimetals.

The studies of magneto-transport in Cd3As2 have already begun [8].

The linear spectrum of quasi-particles also opens new possibilities for photon-

ics/plasmonics. In graphene, which is two dimensional (2D), the plasmon mode does not

appear in the Random Phase Approximation (RPA) [9]. A plasmon does arise after dop-

ing, or the inclusion of electron-electron interactions, with a plasmon frequency that is in

the terahertz (THz) range of frequency [10]. This range is important for diverse practical

applications ranging from medical imaging to security.

In this paper we investigate the properties of the collective plasmon excitation in three

dimensional (3D) Dirac semimetals. Relative to 2D graphene, because of the extra spatial

dimension a strong and narrow plasmon peak already appears in the Random Phase Ap-

proximation. At zero chemical potential and for a broad range in temperature, the plasmon

frequency is approximately linear in T , and is in the THz range at room temperature.

Dirac semimetals are characterized by strong coupling and a large fermion degeneracy,

N . We show that this leads to universal properties of the plasmon excitation: the plasmon

spectrum does not depend on the value of the coupling constant nor upon the degeneracy,

N , of the Dirac point. The reason underlying this universality is the quantum scale anomaly

of relativistic field theory, where it is known as “dimensional transmutation”. In Quantum

Chromodynamics (QCD), this phenomenon is responsible for the masses of all strongly

interacting particles, and thus for ∼ 95% of the mass of the visible Universe.

To compute the plasmon spectrum we need a method valid at strong coupling. This is

because for both 3D Dirac semimetals and for 2D graphene, the role of the fine structure

constant αem = e2/(4π~c) is played by the effective coupling α = e2/(4π~v), where v � c
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is the Fermi velocity. The Fermi velocity in Cd3As2 was experimentally determined[8] to be

v ' 9.3 × 105 m/s ' 1/300 c, close to the value in graphene. Because of this, the effective

coupling constant α ' 2.2 is very large. This is comparable to the value of the strong

coupling constant in the Quark-Gluon Plasma, near the deconfining transition in QCD.

Generally, the photon propagator cannot be computed perturbatively in strong coupling.

However, there is an alternate expansion possible. The degeneracy factor of fermion quasi-

particles is large: due to the degeneracy in the electron spin and double valleys, N = 4

for both 3D Dirac semimetals and for graphene. We can then use a large N expansion

to compute the photon propagator to leading order in 1/N . At nonzero temperature and

density, the result for the photon propagator is similar to that obtained in the Hard Thermal

Loop (HTL) approach to the Quark-Gluon Plasma [11, 12]. The HTL approximation is used,

e.g., to compute the rate of electromagnetic radiation from the Quark-Gluon Plasma [13].

In this paper we employ similar methods for evaluating the plasmon spectrum and damping

rate in Dirac semimetals.

When the number of fermions species N is large, the photon dynamics is dominated by

dressing the photon with the one loop fermion diagrams. More precisely, in the effective

large N action for the photon, the dominant kinetic term is provided by the large

N enhanced self-energy arising from one loop fermion diagram, which gives the

leading photon propagator in the large N perturbation scheme. As a result, the

photon propagator is suppressed by 1/N , and photon-mediated interactions are suppressed

by 1/N , so the fermion dynamics are those of a free theory. As long as N is sufficiently

large, this remains true even at strong coupling [14]. A similar large N suppression also

holds true for higher photon vertices generated by fermion one loop diagrams.

Further, we can neglect the scale dependence of the Fermi velocity, as that originates from

loop corrections to the fermion propagator. Indeed, for graphene the suppression of the

dependence of the velocity scale with 1/N is manifest [15]. One needs to include these 1/N

corrections to correctly estimate the quality of large N approximation; we leave these studies

for future investigations.

In the one loop approximation at large N , the longitudinal Coulomb and the transverse

sectors of the plasmon decouple from one another. In the following we focus on the Coulomb

sector. (We note, however, that in the static limit in which we compute, the transverse and

Coulomb plasmons are degenerate.) From the above discussion, the effective coupling in the
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Coulomb sector is

λ(Λc) ≡
Ne2(Λc)

v
. (1)

We emphasize here the dependence on the physical UV lattice cutoff Λc at which the observed

value of the coupling is defined:

e2(Λc) '
1

137
× (4π) ≈ 0.1 . (2)

It is well known that in a gauge theory with massless fermions there is no intrinsic notion

of the coupling constant: the coupling constant changes, or “runs”, as the length scale at

which it is probed changes. Hence one can trade the value of the coupling constant for the

dimensionful scale at which it is defined, which is known as “dimensional transmutation”.

For our purposes we can define this scale as that where the coupling blows up, at the Landau

pole ΛL. The physical observables then depend only upon the ratio of an external scale, Q,

at which the coupling is measured to ΛL. At one loop order, the coupling λ(Q) at a scale Q

is given by

λ(Q) =
λ(Λc)

1− λ(Λc)
12π2 log

(
Q2

Λ2
c

) =
12π2

log
(

Λ2
L

Q2

) . (3)

The first equality in Eq. (3) contains a Landau pole at ΛL ≡ Λc · exp(6π2/λ(Λc)), which is

where the coupling constant diverges. We can then rewrite this as the second equality in

Eq. (3), which shows that the coupling is a function solely of the ratio Q/ΛL. That is, Λc

and λ(Λc) are transmuted to a single scale ΛL, which is the only dimensionful parameter

of the theory. This means that at nonzero temperature T and chemical potential µ, any

observable in the photon sector is of the form

T∆f

(
T

ΛL

,
µ

T

)
. (4)

Here ∆ is the mass dimension of the observable; in this paper it is the plasmon frequency,

with ∆ = 1. The function f(x, y) depends upon the observable in question, but is otherwise

universal: all of the dependence on Λc and λ(Λc) is included in the single parameter, ΛL.

It is worth emphasizing that neither N or v appears in the function f(x, y). This is most

powerful, as it is then possible to find f(x, y) with ease in the one-loop approximation valid at

large N . In this paper we compute the universal function f(x, y) for the plasmon frequency
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at zero spatial momentum. It is worth emphasizing that the “vacuum” contribution to the

one loop diagram, from zero temperature and density, plays a crucial role in realizing this

universality. (This is not captured by the Hard Thermal Loop limit, which neglects the

vacuum contribution.)

The limit of strong coupling is defined as follows. Given the physical lattice cutoff, Λc,

with a fixed e2(Λc) ≈ 0.1, a large value of N/v can give a large value of λ(Λc). Thus, in

the strong coupling limit, ΛL = e6π2/λ(Λc)Λc ≈ Λc, any observable in the photon sector at

nonzero T and µ becomes

T∆f

(
T

Λc

,
µ

T

)
, (5)

with the same function f(x, y). That is, the result is independent of the values of N , v, or

e2(Λc) ≈ 0.1. We call this a universality of strong coupling.

For N = 4 and 1/v = 300, we have

λ(Λc)/6π
2 ≈ 2 , (6)

so that

ΛL ≈ 1.65 Λc . (7)

In spite of the uncertainty in the value of Λc, it is thus reasonable to assume that the strong

coupling limit, and so Eq. (5), are justified.

Our main novel result is a complete determination of the function f(x, y) for the plasmon

frequency (∆ = 1) at zero spatial momentum in 1-loop large N approximation. The resulting

plasmon exhibits the scaling behavior expected from the quantum dimensional transmuta-

tion phenomenon. Our result gives a concrete prediction for the plasmon frequency in Dirac

semimetals which has a universal form.

We now turn to a summary of the details of the computation of the plasmon frequency.

The plasmon arises from the singularity in the longitudinal component of the retarded photon

propagator. In Coulomb gauge, ~∇ · ~A = 0, this propagator is

Π00
R (p) ≡ 〈A0(p)A0(−p)〉 =

i

|p|2 − ΠL
R(p)

, ΠL
R(p) ≡ 〈J0(p)J0(−p)〉R . (8)

The one-loop expression for the longitudinal retarded self-energy ΠL
R(p) consists of two parts:

the first in vacuum, at T = µ = 0, and the second from T, µ 6= 0. The contribution in vacuum
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is

Πvac
R (p) =

Ne2(Λc)|p|2

12π2v
log

(
−p2

Λ2
c

) ∣∣∣
p0→p0+iε

, (9)

where the square of the four momentum is p2 = (p0)2 − v2|p|2 and Λc ≈ 5 eV ≈ 105 K

for Cd3As2 is the ultraviolet cutoff in the energy spectrum of chiral quasiparticles, which

is the maximum energy at the boundary of Brillouin zone measured in ARPES

experiments. The second part from T , µ 6= 0, after rescaling the spatial momentum

integration variable from k to k/v, is given by

Πth
R (p) =

Ne2(Λc)

2π2v3

∫ ∞
0

dk k2N (k)I(p, k) , (10)

where

I(p, k) =

∫ 1

−1

dx

(
2k + p0 + v|p|x

(p0)2 − v2|p|2 + 2p0k − 2v|p|kx+ iε(k + p0)

− 2k − p0 − v|p|x
−(p0)2 + v2|p|2 + 2p0k − 2v|p|kx+ iε(k − p0)

)
, (11)

and N (k) = (e(k−µ)/T + 1)−1 + (e(k+µ)/T + 1)−1 is the sum of the Fermi-Dirac statistical

distribution functions for particles and antiparticles (holes). In the limit of small spatial

momenta, p→ 0, that we focus on, I(p, k) becomes

I(p, k)→ 4

3

kv2 p2

(p0)2
(
k + p0

2
+ iε

)(
k − p0

2
− iε

) +O((p2)2) . (12)

The equation for the plasmon frequency, p0 = ωpl, after changing the integration variable

k → k̄ = k/T and introducing µ̄ = µ/T , is

(p̄0)2 log

(
−(p̄0 + iε)2 · T

2

Λ2
L

)

+8

∫ ∞
0

dk̄ k̄3

(
1

ek̄−µ̄ + 1
+

1

ek̄+µ̄ + 1

)
1(

k̄ + p̄0

2
+ iε

)(
k̄ − p̄0

2
− iε

) = 0 , (13)

where p̄0 = p0/T . In this expression, all other parameters disappear, and are replaced by

the single scale ΛL = e6π2/λ(Λc)Λc ≈ 1.65Λc as discussed before. This shows that the solution

for the plasmon frequency takes the form

ωpl(T ) = T f(T/ΛL, µ/T ) , (14)
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where the function f(x, y) is universal, independent of the values of the coupling constant

e2(Λc), degeneracy N , and the Fermi velocity v.

For small x ≡ T/ΛL and xy ≡ µ/ΛL, the function f(x, y) can be found to agree

with the HTL method with running coupling constant, depending on the value

of y = µ/T . In the case y � 1 the result is

f(x, y) ≈

√
2
(
π2

3
+ y2

)
log(1/x)

, y � 1 , x� 1 , (15)

and in the case of y � 1,

f(x, y) ≈

√
2y2

log (1/xy)
, y � 1 , xy � 1 . (16)

For a general x and y, f(x, y) is complex valued; we have evaluated it numerically. The

imaginary part of f(x, y) is consistently smaller than its real part, which allows us to find

the imaginary part in first order perturbation to the real part. Writing

f(x, y) = p̄0 =
ωpl
T
− i γ

T
≡ ω̄pl − iγ̄ , (17)

the equation for the real part of ω̄pl > 0 is

ω̄2
pl (log x+ log ω̄pl) + 4P

∫ ∞
0

dk̄

(
1

ek̄−y + 1
+

1

ek̄+y + 1

)
k̄3

(k̄ + ω̄pl/2)(k̄ − ω̄pl/2)
= 0 , (18)

where P denotes a principal value integration. With ω̄pl found, in linear approximation the

damping rate γ is

γ̄ = −π
4

ω̄pl
(log x+ log ω̄pl)

(
1− 1

e(ω̄pl/2−y) + 1
− 1

e(ω̄pl/2+y) + 1

)
. (19)

The resulting real and imaginary parts of the plasmon energy, normalized to the temperature

T , are presented in Fig. (1) as a function of log(ΛL/T ) = log(1/x) when y = µ̄ = 0.

In Fig. (2) we present the plasmon frequency in physical units of terahertz (THz) as

a function of temperature at zero chemical potential and at a chemical potential of µ =

200 meV with Λc ' 5 eV ' 5.8 × 104 K, which is characteristic for Cd3As2[1, 2]. For

the case of zero chemical potential, we see that by changing the temperature, the plasmon

frequency can be tuned from the radio wave to the near infrared range of the spectrum. In

this entire frequency range, the damping of the plasmon is weak, with γ/ωpl < 0.05, so the

plasmon peak is very narrow.
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FIG. 1: The real (left) and imaginary (right) parts of the plasmon energy, divided by the temper-

ature, f(x) ≡ ωpl/T − iγ/T , as a function of log(ΛL/T ) = log(1/x).
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FIG. 2: The plasmon frequency ωpl as a function of temperature T .

Let us first estimate numerically the magnitude of the plasmon frequency that we have

derived. The UV cutoff in the energy spectrum of quasiparticles indicated by the ARPES

measurements in Cd3As2 is Λc ' 5 eV ' 5.8 × 104 K. For the dimensionful scale ΛL we

thus get ΛL ' 1.65 Λc ' 105 K, see Eq. (7). For the room temperature of T ' 300 K

we get log(ΛL/T ) ' 5.7. Fig. (1) then yields the plasmon frequency of ωpl ' T ' 6 THz

' 0.5 mm−1. We have thus found that for room temperature Cd3As2 possesses the plasmon

in the terahertz frequency range, which may have important applications for THz imaging.

It is known that Cd3As2 undergoes a phase change at the temperature of T ' 888 K [16].

For this temperature, we get log(ΛL/T ) ' 4.7, and from Fig. (1) the plasmon frequency is

still ωpl ' T , which at this higher temperature yields a higher frequency ωpl ' 18 THz. At

a low temperature of T = 3K, we get log(ΛL/T ) ' 10.4, and from Fig. (1) the plasmon
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frequency is ωpl ' T which yields a low frequency of ωpl ' 60 GHz ' 1 cm−1 which is in the

radio frequency range.

We should point out that our analysis neglects possible additional contribu-

tions to screening, or equivalently the value of the effective coupling constant

at the infrared scale, that are not captured by the quasiparticles with linear

dispersion relations. With a typical infrared cutoff ΛIR = 10 meV provided ei-

ther by chemical potential or by the (small) gap in the dispersion relation, our

prediction for the dielectric constant from Eq.(3) is

ε ≡ e2(Λc)

e2(ΛIR)
=
Ne2(Λc)

12π2v
log

(
Λ2
L

Λ2
IR

)
≈ 11.6 , (20)

which is about factor 3 smaller than the experimental measurement of dielectric

constant in Ref [20]. Since the plasmon frequency depends on these additional

screening effects only through the value of the coupling constant at the infrared

scale, we can accommodate them by effectively rescaling our predictions by

1/
√

3 ≈ 0.6.

Our predictions can be tested experimentally by measuring the plasmon frequency at

different temperatures. In realistic systems, there can be several effects that may in-

validate our treatment that assumes the absence of mass scales other than dimensional

transmutation: for example, a small correction to the linear dispersion relation

p0 =
√
v2|p|2 + (m+B|p|2)2. The presence of such terms involving m and B

will affect the result when T ≤ m or T ≥ v2/B, but should be irrelevant for

v2/B � T � m. We expect that the temperature range that we discuss lies in

this validity regime, since the dispersion relation from ARPES measurements

looks quite linear in the corresponding energy range. The dominant electron exci-

tations for the plasmon oscillation have the momentum p ∼ T/v with Compton wavelength

∆x ∼ v/T ∼ 270 Å, and the system size should be larger than this to neglect possible

finite size effects. We also point out that our scaling relation (4) is expected to be

violated in the case of Weyl semimetals where the separation of Weyl points in

momentum space in general introduces an additional scale in the problem. The

plasmon spectrum in Weyl semimetals presents an interesting open problem.

In summary, plasmons in Dirac semimetals provide a link between the quantum dynamics

of relativistic field theories and photonics. Depending on the chemical potential, which can
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be controlled by doping, Dirac semimetals can be used as sensors or emitters of electro-

magnetic radiation in a broad frequency range, between radio waves, ∼ 100 GHz, and near

infrared, 50 THz.

We thank D. Son and M. Stephanov for discussions. This work was supported in part by

the U.S. Department of Energy under Contracts No. DE-FG- 88ER40388 and DE-AC02-

98CH10886.

Note added in proof: shortly after our preprint, there appeared Ref.[17] which also ob-

served several key features presented in our work. They also considered finite momentum

dispersion of plasmons. There also appeared after our preprint an experimental determina-

tion of the plasmon frequency in ZrTe5 [18] (a known Dirac semimetal [19]), which shows

approximately linear dependence of the plasmon frequency in the temperature range between

100 K and 300 K (see Fig. 3a of that paper) in agreement with our prediction.
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imental Realization of a Three-Dimensional Dirac Semimetal. Phys. Rev. Lett., 113, 027603–

1–27603–5 (2014).

[2] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang,

H.-T. Jeng, H. Lin, et al. Observation of a three-dimensional topological Dirac semimetal

phase in high-mobility Cd3As2. Nature communications, 5 (2014).

[3] Z. Liu, B. Zhou, Y. Zhang, Z. Wang, H. Weng, D. Prabhakaran, S.-K. Mo, Z. Shen, Z. Fang,

X. Dai, et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science,

343, 864–867 (2014).

[4] D. E. Kharzeev. The chiral magnetic effect and anomaly-induced transport. Progress in Particle

and Nuclear Physics, 75, 133–151 (2014).

[5] G. Basar, D. E. Kharzeev and H. U. Yee, Triangle anomaly in Weyl semimetals. Physical

Review B 89, no. 3, 035142 (2014)

[6] Phillip E. C. Ashby and J. P. Carbotte, Chiral anomaly and optical absorption in Weyl

semimetals. Physical Review B 89, 245121 (2014)

[7] J. Zhou, H.-R. Chang and D. Xiao, Plasmon mode as a detection of the chiral anomaly in

Weyl semimetals. Physical Review B 91, 035114 (2015)

10



[8] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. Cava, and N. Ong. Ultrahigh mobility and giant

magnetoresistance in Cd 3 As 2: protection from backscattering in a Dirac semimetal. arXiv

preprint arXiv:1404.7794 (2014).

[9] S. Gangadharaiah, A. Farid, and E. Mishchenko. Charge Response Function and a Novel

Plasmon Mode in Graphene. Phys. Rev. Lett., 100, 166802–1–166802–4 (2008).

[10] A. Grigorenko, M. Polini, and K. Novoselov. Graphene plasmonics. Nature photonics, 6,

749–758 (2012).

[11] R. Pisarski. Scattering amplitudes in hot gauge theories. Phys. Rev. Lett., 63, 1129–1132

(1989).

[12] E. Braaten and R. D. Pisarski. Soft amplitudes in hot gauge theories: a general analysis.

Nuclear Physics B, 337, 569–634 (1990).

[13] E. Braaten, R. D. Pisarski, and T. C. Yuan. Production of soft dileptons in the quark-gluon

plasma. Physical Review Letters, 64, 2242–2245 (1990).

[14] D. Son. Quantum critical point in graphene approached in the limit of infinitely strong Coulomb

interaction. Physical Review B, 75, 235423–1–235423–7 (2007).

[15] I. Aleiner, D. Kharzeev, and A. Tsvelik. Spontaneous symmetry breaking in graphene subjected

to an in-plane magnetic field. Physical Review B, 76, 195415–1–195415–27 (2007).

[16] S. E. R. Hiscocks and C. T. Elliott. On the preparation, growth and properties of Cd3As2. J.

Materials Science, 4, 784–788 (1969).

[17] J. Hofmann and S. Das Sarma Plasmon signature in Dirac-Weyl liquids. arXiv:1501.04636

[cond-mat.mes-hall]

[18] R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang.

Optical spectroscopy study of three dimensional Dirac semimetal ZrTe5. arXiv:1505.00307

[cond-mat.mtrl-sci]

[19] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong and

J. A. Schneeloch et al.. Observation of the chiral magnetic effect in ZrTe5. arXiv:1412.6543

[cond-mat.str-el].

[20] J.-P. Jay-Gerin, Solid State Comm., v.21, p.771 (1977).

11


	References

