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Utilizing a silicon nanobeam optomechanical crystal, we investigate the attractor diagram arising from the
radiation pressure interaction between a localized optical cavity at λc = 1542 nm and a mechanical resonance
at ωm/2π = 3.72 GHz. At a temperature of Tb ≈ 10 K, highly nonlinear driving of mechanical motion is
observed via continuous wave optical pumping. Introduction of a time-dependent (modulated) optical pump is
used to steer the system towards an otherwise inaccessible dynamically stable attractor in which mechanical self-
oscillation occurs for an optical pump red-detuned from the cavity resonance. An analytical model incorporating
thermo-optic effects due to optical absorption heating is developed, and found to accurately predict the measured
device behavior.

Cavity optomechanical systems involving interactions of
light and mechanical motion in a mechanically compliant
electromagnetic cavity [1] are of interest for precision sen-
sors [2, 3], in nonlinear optics [4, 5], and in the study of macro-
scopic quantum systems [6, 7]. To lowest order, the mechani-
cal displacement linearly modulates the frequency of the opti-
cal resonance in a cavity-optomechanical system. This, how-
ever, gives rise to an inherently nonlinear phase modulation,
and through radiation-pressure backaction on the mechanical
element, yields nonlinear system dynamics [8]. Much of the
previous work has focused on the linearized regime where the
interaction with the optical field still gives rise to a host of in-
teresting phenomena such as a modified spring constant [9],
damping or amplification of the mechanics [10], and EIT-like
slow-light effects [11, 12]. Recently, several experiments have
pushed into the quantum regime using backaction cooling to
bring nanomechanical resonators near their quantum ground
state of motion [13, 14].

In this work, we instead demonstrate new features and tools
in the nonlinear regime of large mechanical oscillation ampli-
tude. In contrast to the well-known static fixed points of an
optomechanical system [15], we are interested here in the dy-
namic multistability associated with the finite-amplitude me-
chanical limit cycles that result from radiation pressure dy-
namic backaction. Previous experimental works have shown
that a blue-detuned laser drive can lead to stable mechani-
cal self-oscillations [16–20], and dynamic bistability has been
observed for a photothermally driven micromechanical sys-
tem [21] and in the collective density oscillations of an atomic
Bose-Einstein condensate inside a Fabry-Perot cavity [22].
Theoretical predictions, however, indicate that radiation pres-
sure dynamic backaction can lead to an even more intricate,
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FIG. 1: (a) SEM of the OMC cavity surrounded by phononic shield
(green). (b) FEM-simulated electromagnetic energy density of the
first-order optical mode. (c) FEM-simulated mechanical mode pro-
file (displacement exaggerated). In (b) the colorscale bar indicates
large (red) and small (blue) energy density, whereas in (c) the scale
bar indicates large (red) and small (blue) displacement amplitude. (d)
Simplified schematic of the experimental setup. WM: wavemeter, ∆φ:
electro-optic phase modulator, D1: pump light detector, D2: probe
detector, VOA: variable optical attenuator, PM: power meter. Pump
and probe lasers are not mutually coherent to avoid interference ef-
fects and we modulate the probe and monitor the detected tone using
a lock-in amplifier (not shown).

multistable attractor diagram [8]. In the present work we are
able to verify the predicted attractor diagram, and further, uti-
lize a modulated laser drive to steer the system into an iso-
lated high-amplitude attractor. This introduces pulsed control
of nonlinear dynamics in optomechanical systems dominated
by radiation pressure backaction, in analogy to what has been
shown recently for a system with an intrinsic mechanical bista-
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bility [23].
We employ a one-dimensional optomechanical crystal

(OMC) cavity designed to have strongly interacting optical and
mechanical resonances [24]. The OMC structure is created
from a free-standing silicon beam by etching into it a peri-
odic array of holes which act as Bragg mirrors for both acous-
tic and optical waves [25]. A scanning electron micrograph
(SEM) of an OMC cavity is shown in Fig. 1a along with finite-
element-method (FEM) simulations of the co-localized opti-
cal (Fig. 1b) and mechanical (Fig. 1c) resonances. To reduce
radiation of the mechanical energy into the bulk, the cavity
is surrounded by a periodic ‘cross’ structure which has a full
acoustic bandgap around the mechanical frequency (Fig. 1a,
green overlay) [26].

The experimental setup is shown schematically in Fig. 1d.
The silicon chip containing the device is placed into a he-
lium flow cryostat where it rests on a cold finger at T ≈ 4 K
(the device temperature is measured to be Tb ≈ 10 K). Laser
light is sent into the device via a tapered optical fiber, which,
when placed in the near-field of the device, evanescently cou-
ples to the optical resonance of the OMC [27]. A narrow
linewidth, frequency tunable pump laser is used to excite and
measure the optical and mechanical resonances of the OMC
cavity. The transmitted pump light is sent to a high-bandwidth
photodetector (D1), which is connected to a real-time spec-
trum analyzer (RSA) for spectral analysis. Scanning the pump
laser frequency and measuring the time-averaged transmitted
light intensity yields a resonance dip at λc = 1542 nm for the
fundamental optical mode of the device under study in this
work. From the spectrum the intrinsic and taper-loaded en-
ergy decay rate of the optical resonance is estimated to be
κi/2π = 580 MHz and κ/2π = 1.7 GHz, respectively. Me-
chanical motion modulates the phase of the internal optical
cavity field, scattering the pump light into motional sidebands
which beat with the unscattered pump field on the photodi-
ode [13]. From the microwave spectrum of the measured pho-
tocurrent at low pump power we find the breathing mechanical
mode to be at frequency ωm/2π = 3.72 GHz with an intrinsic
linewidth of γi/2π = 24 kHz. These device parameters put our
system well into the sideband resolved regime κ/ωm� 1.

The interaction between the internal light field and the
mechanical motion is given by the interaction Hamiltonian,
Hint = ~g0â†âx̂, where â (x̂) is the optical (mechanical) field
amplitude, and g0 is the vacuum optomechanical coupling
rate. The mechanical displacement expectation is given by
x = xzpf〈x̂〉, where the zero-point amplitude of the resonator is
xzpf = (~/2meffωm)

1/2 = 2.7 fm (estimated using a motional
mass meff = 311 fg calculated from FEM simulation). By
calibrating the optically-induced mechanical damping versus
pump power [13] we find that g0/2π = 941 kHz. In the device
studied here this vacuum coupling rate is dominated by the
photo-elastic component of the radiation pressure force [24].

The classical nonlinear equations of motion for the mechan-
ical displacement (x) and the optical cavity amplitude (a= 〈â〉)
are,

ẍ(t) =−γiẋ(t)−ω
2
mx(t)+2ωmg0xzpf|a(t)|2, (1)

ȧ(t) =
[
−κ

2
+ i
(

∆L +
g0

xzpf
x(t)
)]

a(t)+

√
κe

2
ain, (2)

where ain =
√

Pin/~ωL is the effective drive amplitude of the
pump laser (input power Pin and frequency ωL), κe/2 is the
fiber taper input coupling rate, ωc is the optical cavity reso-
nance frequency, and ∆L ≡ ωL −ωc. For self-sustained os-
cillations, where the motion of the oscillator is coherent on
time scales much longer than the cavity lifetime, we can take
the mechanical motion to be sinusoidal with amplitude A,
x(t) = Asinωmt. The optical cavity field is then given by,

a(t) =

√
κe

2
aineiΦ(t)

∑
n

inαneinωmt , (3)

where Φ(t) = −βm cosωmt and αn =
Jn (βm)/(κ/2+ i(nωm−∆L)). Here Jn is the Bessel function
of the first kind, n-th order, and its argument is the unitless
modulation strength βm = (Ag0)/

(
xzpfωm

)
. For βm� 1 only

the terms oscillating at the mechanical frequency, ωm, are
appreciable, so the interaction can be linearized, and only the
first-order radiation pressure terms are present. However, for
β≥ 1 the higher harmonic terms at each nωm have significant
amplitude and backaction force.

The thermal amplitude is too small to enter the nonlinear
regime in our devices (βth ≈ 0.01), however, backaction from
the pump laser can provide amplification to drive the mechan-
ical resonator into the high-β, nonlinear regime. The result-
ing mechanical gain spectrum in the amplitude-detuning plane
(the attractor diagram) can be solved for by calculating the en-
ergy lost in one mechanical cycle (Pfric =meffγi

〈
ẋ2
〉
) and com-

paring it to that gained (or lost) from the optical radiation force
(Prad =

(
~g0/xzpf

)〈
|â|2ẋ

〉
) [8] . Figure 2a shows a plot of the

gain spectrum for the parameters of the device studied here
with a laser pump power of Pin =151 µW. Imposing energy
conservation, Prad/Pfric = +1, yields the steady-state solution
contour lines. Although the entire contour is a physical solu-
tion, the equilibrium is only stable when the power ratio de-
creases upon increasing the mechanical amplitude, ∂

∂β

Prad
Pfric

< 0
(i.e. stability is found at the ’tops’ of the contours) [8]. At
higher powers (black contours) we see that for many laser
detunings there are several stable mechanical-amplitude solu-
tions demonstrating the presence of dynamic multistability.

In the device studied here there is a thermo-optic frequency
shift of the optical cavity caused by heating due to intra-
cavity optical absorption. The thermal time constant of the
device structure is slow relative to the optical cavity coupling
rate, but fast compared to the laser scan speed. Absorption
heating can thus be modeled as a shift of the laser detuning
proportional to the average intra-cavity photon number (n̄a),
∆L = ∆L,0 + cton̄a, where ∆L,0 is the bare laser-cavity detuning
in absence of thermo-optic effects. The per photon thermo-
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FIG. 2: (a) Calculated gain spectrum for the OMC in the amplitude-detuning plane. Color scale indicates (Prad/Pfric−1) at Pin = 151 µW.
Solid line curves indicate power-conserving solution contours at selected input powers: 0.65 µW (white), 6.5 µW (grey), 151 µW (black). (b)
Same as (a) with contours now shifted by estimated thermo-optic effects (the intensity plot of the gain is left unshifted for reference). Solid
line curves indicate the path taken by the mechanical oscillator during a slow laser frequency sweep. Dashed lines are contours which are
either unstable or unreachable using this method. (c) Image plot of the measured optical transmission spectrum versus laser detuning and
power. The wavelength scan rate (∼ 300 GHz/s) is much slower than the internal dynamics of the optomechanical system. (d) Image plot
of the theoretically calculated transmission spectra including thermo-optic shifts and a slow drift in the optical resonance frequency over the
course of the measurement from low to high power. Spectra in (c) and (d) are normalized at each power level. (e) Plot of the normalized optical
transmission from scans in (c) at Pin = 0.12 µW (top), 0.65 µW (center), 151 µW (bottom). Blue points are measured data and the red curves
are the theoretical model. (f) Power spectral density of transmitted pump photocurrent near the mechanical frequency for Pin = 151 µW. (g)
Total integrated power of spectra in (f). Measured data are plotted as green circles, with the theoretical model (up to a scale factor) shown as a
solid red curve. The red arrow in each plot indicates the laser scan direction.

optic frequency shift of the optical cavity is measured to be
cto/2π = −216 kHz. Including this effect, the shifted con-
tours are shown in Fig. 2b as a function of the bare detun-
ing ∆L,0. The solid lines with arrows indicate the expected
path traversed by the mechanical resonator during a slow laser
scan from lower to higher laser frequency (left to right) at each
power. The dashed lines are contours that are either unstable,
or unreachable by this adiabatic laser sweep. Note that while
thermo-optic frequency shifts can be up to 10ωm on resonance,
the contours traced out by the laser sweep are only slightly
shifted as the laser never reaches the cavity resonance due to
the thermo-optic bistability.

In Fig. 2c-g we explore the lowest-lying contour of the at-
tractor diagram by measuring the optical transmission as the
pump laser is tuned from red to blue across the optical cav-
ity resonance with different fixed optical input powers. At
low optical input powers (Pin < 0.3 µW), only a single reso-
nance dip associated with the bare optical cavity is observed.
Upon increasing the laser power, radiation pressure backaction
amplifies the thermal motion of the mechanical resonator be-
yond threshold and into a large amplitude state. When this
occurs a large fraction of the intra-cavity photons are scat-
tered, resulting in additional transmission dips near each de-
tuning ∆L = nωm. Physically, mechanical oscillations at the
n-th sideband detuning are generated by a multi-photon gain
process involving n photon-phonon scattering events. This
stair-step behavior is seen in the measured transmission spec-

trum of both Fig. 2c and Fig. 2e. The theoretically calcu-
lated spectra for our measured device parameters are shown
in Fig. 2d, showing good agreement with the measured spectra
after including thermo-optic effects. Figure 2f shows the mi-
crowave noise power spectrum at the highest measured input
power (Pin = 151 µW), indicating a significant optical spring
effect (∼ 2 MHz) with complicated detuning dependence. Fig-
ure 2g shows the integrated power in the first motional side-
band versus detuning. The discrepancy between the measured
and modeled curve (solid red line) near the largest transmis-
sion dip at the highest power is likely due to the effects of non-
linear optical absorption at high intra-cavity photon numbers
which is not included in our model.

It is readily apparent from Fig. 2a that at large optical pow-
ers (black contour) there are also a number of isolated attrac-
tor contours at higher oscillation amplitudes. Here we utilize
external time-dependent driving of the mechanical mode to
explore the lowest-lying isolated attractor on the red side of
the optical cavity (∆L < 0), where the linearized theory pre-
dicts only damping of the mechanical mode. An electro-optic
modulator (EOM) is utilized to phase-modulate the incoming
light field (see Fig. 1d), resulting in an oscillating force in-
side the cavity which drives the mechanical resonator towards
higher amplitudes. The experimental sequence is displayed in
Fig. 3a. We start with the pump laser switched on at a power
of Pin = 43 µW, the laser detuned to the red side of the cav-
ity resonance, and the phase modulation off (βEOM = 0), which
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FIG. 3: (a) Schematic showing the state preparation and measurement sequence used to explore the higher lying attractors. (b) Measured
time-domain signal of one quadrature of the transmitted pump photocurrent during the turn-on of the EOM drive (t = 0). The signal is mixed
down from the mechanical resonance frequency at 3.7 GHz to 150 kHz. (c) Measured transmitted pump photocurrent (mixed down to 500 kHz)
during the turn-off of the EOM drive modulation. Here we show a case where the system remained trapped in the high-amplitude state. (d)
Transmission scans of the counter-propagating probe laser during each sequence of the measurement. Blue points are measured data and red
curves are fits to the data. (e) Mechanical power spectrum (green points) during each sequence of the measurement. (f) Plot of the normalized
gain spectrum in the detuning-amplitude plane with overlaid stable solution contour (black solid curve) at Pin = 43 µW. Color scale is the
power ratio, (Prad/Pfric−1). Dashed black curve indicates unstable portion of contour. Red data points indicate initial (βm,∆L) and grey data
points indicate the final values. White arrows connect initial/final pairs but do not indicate the actual path taken by the system.

initializes the mechanical resonator into a cooled thermal state
with βm ≈ 0. The EOM phase modulation is then turned on
which rings up the mechanical resonator. Following ring-up,
the pump laser is tuned to a starting detuning of ∆L, completing
the initialization sequence. Finally, the modulation is switched
off (βEOM → 0) and the system relaxes into a final mechanical
oscillation amplitude and laser-cavity detuning.

A time domain signal of the modulated transmitted light
field is measured at each stage of the above procedure by
mixing down the measured photocurrent on the RSA (see
Figs. 3b and 3c). In order to determine the mechanical am-
plitude βm and true laser-cavity detuning ∆L, we use a sec-
ond counter-propagating weak optical probe laser of frequency
ωp to obtain a cavity spectrum (see Fig. 1d and caption for
details). When the mechanical amplitude is large (βm & 1)
the standard single resonance dip is transformed into a multi-
featured spectrum with resonance dips at the motional side-
bands, ∆p ≡ ωp−ωc = nωm (see panels in Fig. 3d). A fit to
the probe spectrum is performed using Eq. 3, with βm and ωc
as free parameters. A plot of the microwave power spectrum
of the photodetected transmitted pump light is also plotted in
Fig. 3e, showing the linewidth narrowing and frequency shift
in the mechanical resonator as it transitions between different
states. Repeating the measurement for different initial states
and recording the resulting final states reveals the flow in the
underlying attractor diagram. For clarity, only a representative
subset of the 38 measurement runs performed is presented in
Fig. 3f. We find that for a narrow range of initial conditions
(occurring in 22 of the 38 measurement runs), after the modu-

lation is switched off the system remains trapped close to the
predicted top of the higher amplitude attractor at βm≈3.5 and
∆L/ωm≈−0.7. For more negative initial detunings or lower
initial mechanical amplitudes, the system relaxes into the triv-
ial low-amplitude state or gets caught on the lowest-lying con-
tour explored in Fig. 2 (for detunings ∆L/ωm > −0.5 the sys-
tem could not be stably initialized due to the thermo-optic ef-
fect).

The results presented here represent an initial exploration
of the nonlinear attractor diagram of an optomechanical sys-
tem where the dominant nonlinearity is that of the radiation
pressure interaction. Due to the limited drive amplitude of the
electro-optic modulator used in this work (βEOM . 3.5), we are
limited to exploring only the lowest red-side attractor. With
the ability to apply larger drives, or to rapidly detune the laser,
it should be possible to reach higher-lying islands, and more
fully explore the attractor diagram shown in Fig. 2a. Further
understanding of the latching effects in these measurements
should also pave the way to exploiting them for use in metrol-
ogy experiments as the dynamics that govern whether the os-
cillator stably latches into an attractor can be a very sensitive
function of the oscillator’s displacement [8], thus yielding a
precise measurement of the oscillator’s environment or state.
This latching also allows for systems with memory due to the
hysteretic nature of the nonlinearity, as in [23, 28–31]. Finally,
in future devices where the optomechanical coupling rate is
larger, these same nonlinearities can lead to quantum mechan-
ical effects which have thus far only been explored theoreti-
cally [32].
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