This is the accepted manuscript made available via CHORUS. The article has been published as:

Three-Photon-Annihilation Contributions to Positronium Energies at Order $m\alpha^7$
Gregory S. Adkins, Minji Kim, Christian Parsons, and Richard N. Fell
Phys. Rev. Lett. 115, 233401 — Published 1 December 2015
DOI: 10.1103/PhysRevLett.115.233401
Three-photon-annihilation contributions to positronium energies at order ma^7.

Gregory S. Adkins,* Minji Kim, and Christian Parsons
Franklin & Marshall College, Lancaster, Pennsylvania 17604

Richard N. Fell
Brandeis University, Waltham, Massachusetts 01742
(Dated: October 23, 2015)

Positronium spectroscopy (n = 1 hyperfine splitting, n = 2 fine structure, and the 2S-1S interval) has reached a precision of order 1 MHz. Vigorous ongoing efforts to improve the experimental results motivate the calculation of the positronium energy levels at order ma^7. In this work we present the result for a complete class of such contributions—those involving virtual annihilation of positronium to three photons in an intermediate state. We find an energy shift of 2.6216(11)$ma^7/(n\pi)^3 = 11.5/n^3 kHz$ for the spin-triplet S state with principal quantum number n. The corresponding energy shift for true muonium (the $\mu^+\mu^-$ bound state) is $2.38/n^3 MHz$ with an additional $-5.33/n^3 MHz$ coming from electronic vacuum polarization.

PACS numbers: 36.10.Dr, 12.20.Ds

Positronium, the bound state of an electron and its antiparticle, the positron, is of fundamental interest for a number of reasons. It represents the purest example of binding in quantum field theory as the constituents are structureless point particles and their low mass implies that the dynamics is dominated by QED—strong and weak interactions effects are negligible. As a particle-antiparticle bound state, positronium exists in eigenstates of the discrete symmetries parity and charge conjugation, leading to the possibility of leptonic tests of the corresponding symmetries and also to the presence of real and virtual annihilation into photons. An additional difference between positronium and other bound states such as hydrogen and muonium is the fact that the m/M recoil effects in positronium are maximal due to the equality of electron and positron masses. Crucially, positronium is accessible to high-precision measurements of its spectrum, decay rates, and branching ratios, and so provides an ideal laboratory for testing fundamental theory and calculational methods for bound state QED. Confirmed discrepancies between theory and measurement could be a signal for new physics in the leptonic sector.

Several measurements of the positronium $n = 1$ and $n = 2$ transition frequencies have been done with uncertainties of order 1 MHz. These include the $n = 1$ hyperfine splitting ($1^3S_1 - 1^3S_0$), the 2S-1S interval ($2^3S_1 - 1^3S_1$), and a number of purely $n = 2$ intervals [1]. For example, the $n = 1$ hyperfine (hfs) results with the highest precision are [2–5]

$$
\begin{align*}
\Delta E_{\text{hfs}}(\text{Brandeis}) &= 203.387.5(1.6) \text{ MHz} \\
\Delta E_{\text{hfs}}(\text{Yale}) &= 203.389.10(0.74) \text{ MHz} \\
\Delta E_{\text{hfs}}(\text{Tokyo}) &= 203.394.2(1.6)_{\text{stat}}(1.3)_{\text{sys}} \text{ MHz}.
\end{align*}
$$

(1)

The best result for the 2S-1S interval is [6]

$$
\Delta E(2^3S_1 - 1^3S_1) = 1233.607.216.4(3.2) \text{ MHz}.
$$

(2)

There is currently a significant push to explore new and improved approaches to the hfs measurement [7–13] and to improve the 2S-1S result [14–17]. At the moment, the hfs measurement is the more precise, but there appears to be more potential for improvement in the 2S-1S measurement. The natural line width for the hyperfine transition is $\sim 1.3 GHz$, so the $\sim 1 MHz$ uncertainty in the hfs number represents a line-splitting factor of better than one part in a thousand; if a similar splitting of the 2S-1S transition could be achieved (natural line width $\sim 1.3 MHz$), an ultimate experimental precision of a few kHz might be in reach. Significant improvements in the $n = 2$ fine structure [18–22] would also be possible if a similar line splitting could be performed.

On the theoretical side, all energy contributions through terms of $O(ma^6)$ are known analytically [23–26]. In addition, the leading log terms of $O(ma^7 \ln^6(1/\alpha))$ are known [27–29], as well as the subleading log contribution to the hfs [30–32], and a number of pure $O(ma^7)$ contributions [33–38]. The present theoretical result for the hfs is consistent with the latest of the hfs experiments ("Tokyo" in Eq. (1)) but is $\sim 3 \sigma$ above the earlier results. The theoretical result for the 2S-1S interval is in marginal agreement (2.4 σ) with the experimental value.

The known contributions to the positronium $n = 1$ energy levels are shown in Table I, listed by order in α and $\ln(1/\alpha)$. Also shown are the numerical values, in MHz, of ma^4, $ma^5 \ln(1/\alpha)$, etc. One can see that the actual energy contributions are somewhat smaller, by a factor of ~ 3, than the values $ma^7 \ln^6(1/\alpha)$ of the associated order. However, pure ma^7 contributions as large as several tenths of a MHz have been shown to arise when “ultrasoft” photons (energy and momentum $\sim ma^2$) are involved [33, 34]. Knowledge of the full ma^7 result is essential for the unambiguous interpretation of present, and certainly future, measurements of the positronium transition energies, especially for the 2S-1S interval.
Positronium energy contributions can be classified by whether or not they involve a complete annihilation of the electron-positron pair into some number of virtual photons as an intermediate state. Processes involving annihilation into one, two, three, and four photons all contribute at $O(m^7)$. Charge conjugation symmetry implies that the $\ell = 0$ spin-triplets n^3S_1 are only affected by one- or three-photon intermediate states, while the spin-singlets n^1S_0 are only affected by two- or four-photon intermediate states. The one-photon-annihilation contribution at $O(m^7)$ is known [34]. The purpose of this letter is to present the result for the $O(m^7)$ energy level correction due to all processes involving three-photon intermediate states.

The main challenge in dealing with the three-photon-annihilation ($3\gamma A$) graphs is the separation of real and imaginary parts. Our approach is to deal with the graphs non-covariantly by first integrating over the energy components of the annihilation photon loop momenta. We then identify the terms that contribute imaginary energies by Cutkosky analysis [39] and isolate the imaginary parts of the annihilation photon loop momenta. We illustrate this procedure in a calculation of the lowest order $3\gamma A$ graph shown in Fig. 1. The diagram shown represents one of the six permutations of annihilation photons that contributes at this order.

The energy shift through $O(m^7)$ due to $3\gamma A$ graphs depends on the spin of the positronium state and the value of the wave function at spatial contact ϕ_0—other features of the wave function do not enter. All internal momenta are “hard”—of $O(m)$—while momenta of order ma and m^2a^2 do not contribute. Consequently, any convenient bound state formalism can be used. We employ the formalism of Ref. [40], in which the energy shift is an expectation value

$$\Delta E = i\bar{\Psi}\delta K\Psi \quad (3)$$

where δK is the two-particle-irreducible kernel describing the perturbation and Ψ is the appropriate calculation wave function. The use of this formalism for related calculations was described in Refs. [35, 37, 38].

The energy shift from Fig. 1 can be written as

$$\Delta E = \frac{ma^6}{\pi^2} \frac{2}{3} \int dp dq p^2 q^2 \int_{-1}^{1} du \int dp_0 dq_0 \frac{T_{1a}}{2\pi i D_{1a}} \quad (4)$$

where p and q stand for the magnitudes of the dimensionless photon momentum vectors \vec{p} and \vec{q} (with the electron mass scaled out), $u = \bar{p} \cdot \bar{q}$, T_{1a} is a trace factor, and the denominator is $D_{1a} = (\vec{p}_0^2 - p^2 + i\epsilon_2)((2 - p_0 - q_0)^2 - (\vec{p} + \vec{q})^2 + i\epsilon_2)((q_0^2 - q^2 + i\epsilon_3)\left((p_0 - 1)^2 - p^2 - 1 + i\epsilon_4\right)^2((q_0 - 1)^2 - q^2 - 1 + i\epsilon_5)^2$. We have used distinct values for the various positive infinitesimals ϵ_i to facilitate evaluation of the energy integrals by use of the residue theorem.

After performing the p_0 and q_0 integrals we obtained a number of terms—their giving rise to the imaginary part all contained a denominator factor $p + q + s - 2 - i\epsilon$, where $s \equiv |\vec{p} + \vec{q}|$ and ϵ here is a positive infinitesimal formed from ϵ_1, ϵ_2, etc. We isolated the singularity by writing

$$\frac{1}{p + q + s - 2 - i\epsilon} = \frac{p + q - s - 2}{-2pq(u - \overline{\pi} - i\epsilon)} \quad (5)$$

where $\overline{\pi}$ is the special value of u for which $p + q + s = 2$:

$$\overline{\pi} = -1 + \frac{2(1 - p)(1 - q)}{pq} = 1 - \frac{2(p + q - 1)}{pq} \quad (6)$$

The quantity $\overline{\pi}$ has physical values $-1 \leq \overline{\pi} \leq 1$ when $p \leq 1$, $q \leq 1$, and $p + q \geq 1$. This region, the orthopositronium “decay triangle”, corresponds to physical (positive energy) photons with total energy equal to that of positronium ($2m$ in this approximation). The u

![FIG. 1: The lowest order $3\gamma A$ contribution. The positronium 4-momentum in the center-of-mass frame is $P = (2m, 0)$, and p, q, and $P - p - q$ are the photon 4-momenta. Only one of the six permutations of annihilation photons is shown here.](image-url)

| TABLE I: Known contributions to the average 1S energy and $n = 1$ hfs at various orders in the perturbative series. The first column shows the orders that contribute, starting at ma^4. (The leading contribution to the average energy $-ma^2/4$ is not shown.) The second column gives the numerical value of ma^4, $ma^5\ln(1/\alpha)$, etc. (The energies are expressed in MHz using the 2014 CODATA recommended values for $R_{\infty c}$ and α.) |
|-------|----------------|----------------|
| order | value | E_{avg} (1S) | E_{hfs} ($1^3S_1 - 1^1S_0$) |
|-------|----------------|----------------|
| ma^4 | 350.377 | 38.322.493 | 204.386.630 |
| $ma^5\ln(1/\alpha)$ | 12.580 | 3.003.302 | 0 |
| ma^6 | 2.557 | -1.018.784 | -1.005.497 |
| $ma^7\ln(1/\alpha)$ | 91.8 | 2.869 | 19.125 |
| ma^6 | 18.7 | 3.000 | -7.330 |
| $ma^7\ln(1/\alpha)$ | 3.30 | -1.091 | -0.918 |
| $ma^8\ln(1/\alpha)$ | 0.67 | - | -0.323 |
| ma^7 | 0.14 | - | - |
The integral was written as
\[
\int_{-1}^{1} du \frac{f(p, q, u)}{u - \pi - i\epsilon} = \int_{-1}^{1} du \frac{f(p, q, u) - f(p, q, \pi)}{u - \pi} + f(p, q, \pi) \int_{-1}^{1} du \frac{1}{u - \pi - i\epsilon}
\]
where the final \(u \) integral evaluates to \(\ln((1 - \pi)/(1 + \pi)) + i\pi \) and contains the imaginary part.

The real part of the lowest order \(3\gamma A \) energy shift \(\Delta E_{LO} \) has contributions from the full \(0 \leq p, q \leq \infty \) quadrant. The imaginary part of \(\Delta E_{LO} \) is a 2-dimensional integral and comes only from the decay triangle. There was no infrared difficulty arising from the loop integrals involving annihilation photons because all six permutations of the annihilation photons were considered together. We preformed the numerical integrations using the adaptive Monte Carlo integration routine Vegas [41]. Quadruple precision was required to control the delicate cancellations among the many parts of the integrands. Our total result was
\[
\Delta E_{LO} = \left\{-0.5126319(20) - 0.30354919(3)i\right\} \frac{m\alpha^6}{\pi^2}.
\]

The real part of \(\Delta E_{LO} \) is consistent with the earlier evaluation of the \(3\gamma A \) contribution to the \(\alpha \)-Ps energy at \(O(m\alpha^7) \) [42–44], and the imaginary part gives the corresponding decay rate through \(\Gamma_{LO} = -2\text{Im}(\Delta E_{LO}) \) with a numerical value that agrees with the Ore and Powell result \(\Gamma_{LO} = \frac{2}{\pi}(\pi^2 - 9)m\alpha^6 \) [45]. These checks show that our method of calculation is working properly and also provide an independent check of the \(3\gamma A \) energy shift at this order.

The one-loop corrections to the lowest order \(3\gamma A \) diagram are shown in Fig. 2. These terms all give energy contributions of \(O(m\alpha^7) \). They were evaluated one by one as different techniques were required for the various contributions. Feynman gauge was used throughout. The self energy (Fig. 2a) and outer vertex (Fig. 2b) were fairly straightforward. We used known expressions in terms of Feynman parameters for the self energy and vertex functions [38, 46] and calculated the imaginary parts as integrals over the decay triangle and real parts as integrals over the full \(pq \) quadrant. The results are shown in Table II. A photon mass \(\lambda \) was introduced to allow for mass-shell renormalization of the self energy and vertex parts and to regulate the binding singularity in the ladder graph. All dependence on \(\lambda \) vanished in the net contribution.

The inner vertex contribution of Fig. 2c was not straightforward. The parametric expression for the vertex function contains a denominator factor that is a complicated quadratic function of \(p_0 \) and \(q_0 \) that can’t be easily integrated using the residue theorem. Instead, we derived an expression for an altered vertex function having the same UV behavior (to allow renormalization) but

with no dependence on \(q_0 \) in the denominator. The difference is UV-finite, and we evaluated the integral over the loop momentum \(k \) non-covariantly using our residue theorem routine for \(dk_0 \) while \(d^3k \) was done as part of the overall numerical integration. We found the region of small \(p \) and \(q \) to be particularly challenging for our numerical integration routine. We broke up the integration region into a number of parts near \(p = q = 0 \) and evaluated them individually. The total integral was the result of an extrapolation.

The double vertex (Fig. 2d) was straightforward with no renormalization nor IR regularization required. We performed the loop integral \(d^4k \) as \(dk_0 \) using the residue theorem routine and \(d^3k \) numerically. Again an extrapolation was necessary to achieve an acceptable result for small \(p \) and \(q \).

The ladder graph (Fig. 2e) is UV safe but contains a binding singularity that required special treatment. The IR divergence is regulated by the non-zero photon mass we have assumed throughout. We separated off the most singular part: \(2I_B(\alpha/\pi)\Delta E_{LO} \) where the binding integral
\[
I_B = \int \frac{d^3k}{i\pi^2} \frac{1}{D(k)} = \frac{\pi}{\lambda} + \ln \lambda - 1 + O(\lambda)
\]
with \(D(k) = (k^2 - \lambda^2)((k + n)^2 - 1)((k - n)^2 - 1) \). The \(\pi/\lambda \) term is the binding or threshold singularity in this approach to the problem. Its significance is that the ladder correction contains the basic Coulomb binding that holds the atom together in the first place. The \(\pi/\lambda \) must be discarded, as retaining it would amount to double counting [47]. To make the point in another way, exactly this
would cancel in the matching procedure if the calculation had been done using an effective non-relativistic field theory formalism [48, 49]. The \((\ln \lambda - 1)\) multiplies an expression proportional to the lowest order \(3\gamma A\) contribution (times \(\alpha/\pi\)). The remainder of the ladder contribution is IR finite and was dealt with in the usual way.

The light-by-light graph (Fig. 2f) promised to be a challenge. We could not just integrate the loop momentum non-covariantly using our residue theorem routine because the light-by-light loop has a UV divergence as seen by naive power counting (although this divergence vanishes when all permutations are included). Furthermore, the graph as a whole has an apparent UV divergence by the same power counting argument. On the other hand, a parametric evaluation of the light-by-light loop (to facilitate implementation of the UV cancellation) seems out of bounds because \(p_0\) and \(q_0\) would get hopelessly mixed up, while a parametric evaluation of the graph as a whole would give an expression from which the real and imaginary parts would not be easily disentangled. The key to the evaluation of this graph is the gauge identity satisfied by the light-by-light tensor [53]

\[
\Pi_{\mu_1,\mu_2,\mu_3,\lambda} = -P^\lambda \frac{\partial}{\partial P^\lambda} \Pi_{\mu_1,\mu_2,\mu_3,\kappa}
\]

(10)

where \(P\) is the 4-momentum of the incoming photon and \(\kappa\) is the corresponding Lorentz index. The gauge identity is obtained by differentiating the condition of gauge invariance as applied to the light-by-light tensor \(P^\kappa \Pi_{\mu_1,\mu_2,\mu_3,\kappa} = 0\). The terms on the right hand side of (10) are each well-behaved in the UV and were treated by non-covariant integration of the fermion loop momentum.

While the light-by-light graph contains a virtual annihilation to a single photon, it was not included in the earlier evaluation [34] of one-photon-annihilation contributions [54].

The vacuum polarization contribution (Fig. 2g) is purely real because the vacuum polarization-corrected photon does not have the usual pole at \(p^2 = 0\). We used a standard parametrization of the vacuum polarization function [38] and performed the integrals over \(p\) and \(q\) in two ways: by Feynman parameters and non-covariantly using our residue theorem routine. The results of the two approaches were consistent.

The results for the various contributions are summarized in Table II. The net IR divergence vanishes, as it must. The imaginary part of each contribution is in accord with the corresponding result of prior work. The net result of all \(O(\alpha)\) corrections in the \(3\gamma A\) channel is a correction to the \(n^3S_1\) states of

\[
\Delta E = \left\{ 2.6216(11) + 3.122510(12) i \right\} \frac{\alpha^7}{(n\pi)^3}, \quad (11)
\]

where we have reinstated dependence on the principal quantum number \(n\). For \(\alpha\)-Ps in the ground state the energy level shift amounts to 11.5\(k\)Hz, which is somewhat larger than other known pure \(O(\alpha^2)\) corrections [35–38] except for those involving ultrasoft photons [33, 34]. On comparing (8) and (11) we see that the \(3\gamma A\) corrections involve sizable factors:

\[
\begin{align}
\text{Re}\Delta E_{3\gamma A} &= -0.5126 \left\{ 1 - 5.14(4) \frac{\alpha}{\pi} \right\} \frac{\alpha^6}{\pi^2}, \quad (12a) \\
\text{Im}\Delta E_{3\gamma A} &= -0.3035 \left\{ 1 - 10.28(2) \frac{\alpha}{\pi} \right\} \frac{\alpha^6}{\pi^2}. \quad (12b)
\end{align}
\]

The \(O(\alpha)\) correction to the imaginary part is easily seen in \(\alpha\)-Ps lifetime measurements [55], which are now testing the \(O(\alpha^2)\) correction [56]. The \(3\gamma A\) energy level correction is relevant to all classes of positronium spectroscopy: it contributes \(-10.1k\)Hz to the 2S-1S interval, 11.5\(k\)Hz to the ground state \(\ell\)fs, and 1.44\(k\)Hz to the \(n = 2\) fine structure \((2^3S_1 - 2^2S_{1}\ell P_{\ell})\). It should certainly be seen if suggested improvements in the 2S-1S measurements can be realized.

The corrections obtained in this work also affect true muonium, the \(\mu^+\mu^-\) exotic atom, for which a number of production mechanisms have been proposed [57–65] and which may be produced for the first time by current experiments [66, 67]. Calculations of true muonium properties have been considered in [68–75]. One class of \(3\gamma A\) true muonium energy corrections is given by (11) but with the electron mass \(m\) replaced by the muon mass \(m_{\mu} \approx 206.8m\). Additional \(3\gamma A\) corrections come from vacuum polarization and light-by-light graphs having electrons in the closed fermion loops instead of muons.

<table>
<thead>
<tr>
<th>Term</th>
<th>(\ln \lambda_{LO})</th>
<th>Real Real Imaginary Imaginary</th>
<th>Imaginary (analytic)</th>
<th>Imaginary (calculated)</th>
<th>Imaginary (analytic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE</td>
<td>-4</td>
<td>-4.48169(23)</td>
<td>-1.452474(3)</td>
<td>0.12310(1)</td>
<td>0.12310</td>
</tr>
<tr>
<td>OV</td>
<td>-4</td>
<td>4.47981(26)</td>
<td>0.12310(1)</td>
<td>0.12310</td>
<td>0.12310</td>
</tr>
<tr>
<td>IV</td>
<td>-2</td>
<td>2.28614(44)</td>
<td>0.558326(2)</td>
<td>0.558325</td>
<td>0.558325</td>
</tr>
<tr>
<td>DV</td>
<td>0</td>
<td>-1.35555(59)</td>
<td>1.082948(4)</td>
<td>1.082944</td>
<td>1.082944</td>
</tr>
<tr>
<td>LAD</td>
<td>2</td>
<td>1.22037(48)</td>
<td>2.374291(7)</td>
<td>2.374287</td>
<td>2.374287</td>
</tr>
<tr>
<td>LybL</td>
<td>0</td>
<td>1.05835(39)</td>
<td>0.247109(8)</td>
<td>0.247106</td>
<td>0.247106</td>
</tr>
<tr>
<td>VP</td>
<td>0</td>
<td>-0.585790(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>2.62164(103)</td>
<td>3.122510(12)</td>
<td>3.122494</td>
<td>3.122494</td>
</tr>
</tbody>
</table>
The electronic vacuum polarization correction is

$$\Delta E(eVP) = (-5.86510(20) - 2.538553(14)i) \frac{m_e \alpha^7}{(n \pi)^3}.$$

(13)

The numerical values of these corrections to the true muonium energy levels in the n^3S_1 state are $2.38/n^3\text{MeV}$ from the analog of (11) and $-5.33/n^3\text{MeV}$ from (13), which are however much smaller than other calculated and estimated corrections to true muonium energies.

We are grateful to Zvi Bern for an illuminating discussion about the analysis of complicated diagrams. We thank Jason Brooks and Anthony Weaver for useful suggestions on numerical integration. We acknowledge the support of the National Science Foundation through Grant No. PHY-1404268.

* gadkins@fandm.edu

[1] We use the spectroscopic notation $n^{2S+1}L_J$.
[54] A. A. Penin (private communication).
Phys. 15, 582 (1972)].