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In nonlinear dynamical systems, qualitatively-distinct phenomena occur depending continuously
on the size of the bounded domain containing the system. For nonlinear waves, a multimode
waveguide is a bounded three-dimensional domain, allowing observation of dynamics impossible in
open settings. Here we study radiation emitted by bounded nonlinear waves: the spatiotemporal
oscillations of solitons in multimode fiber generate multimode dispersive waves over an ultrabroad-
band spectral range. This work suggests routes to sources of coherent electromagnetic waves with
unprecedented spectral range.

Eigenmodes are ubiquitous tools for describing com-
plex wave systems. For nonlinear complex wave systems,
however, the superposition principle is not applicable.
In special cases, these systems possess solitons, which
act to some extent as nonlinear eigenmodes. Combined
with more general nonlinear attractors and insights from
linearized systems, researchers may build up a concep-
tual understanding of complex nonlinear wave dynamics.
In optics, one-dimensional (1D) dynamics in single-mode
waveguides have been thoroughly explored, with many
advances hinging on the robust nonlinear attraction of
solitons[1–3]. In unbounded 3D systems, dynamics have
been explained largely in terms of a nonlinearly attract-
ing instability: spatial or spatiotemporal collapse[4]. In
reality, the collapse singularity is avoided by higher-order
effects, and the field eventually expands. In this regime,
promising results have been obtained considering conical
waves, which are the eigenmodes of the 3D linear wave
equation[5, 6]. Conical wave solutions to the nonlinear
wave equation may provide deeper insight[7, 8]. Given
the advantages the concepts of solitons and collapse have
provided for studying single-mode waveguides and free
space filamentation, it is natural to seek similar con-
cepts in multimode waveguides. Multimode waveguides
include as limiting cases single mode fiber (SMF, 1D)
and free-space (3D), so these new concepts, whether soli-
tons, nonlinearly attracting instabilities, guided conical
waves, or something else entirely, could help to conceptu-
ally unify nonlinear optical dynamics across dimensions.
More broadly, owing to similar mathematical descrip-
tions, optical soliton dynamics in multimode waveguides
should correspond to related effects in a wide variety
of systems, e.g. Bose-Einstein condensates[9]. Further-
more, the generation and interaction of dispersive waves
with optical solitons in 1D has yielded many inspiring
analogies[10–12], e.g. to Cerenkov radiation and event
horizons. MMFs will allow more powerful test beds for
these phenomena, with more controllable properties and
a variable, higher dimensionality compared to SMFs.

Solitons in SMF have been intensely researched, be-
cause they are relatively accessible both analytically and

experimentally. Equally important, soliton dynamics are
critical to telecommunications, mode-locked fiber lasers,
and compact white-light sources with high spatial mode
quality. Multimode fibers (MMFs) could provide ma-
jor benefits for various applications, from spatial divi-
sion multiplexing in communications[13, 14], to high-
power, versatile fiber lasers and white-light sources[15].
Although wave propagation in MMF is still experimen-
tally and theoretically challenging, recent theoretical
advances[16–21] make it more accessible. From a scien-
tific perspective, MMF is an ideal environment for study-
ing spatiotemporal nonlinear dynamics. By judicious de-
sign, or by control of the initial excitation, researchers
may control the spatiotemporal characteristics of dynam-
ics, through variation of the effective dimensionality, the
coupling between modes, or their individual dispersions.

These factors have motivated recent work on nonlin-
ear optical waves in MMFs[15, 19, 20, 22–26]. In par-
ticular, we observed that launching ≈200-nJ and 500-fs
pulses at 1550 nm into a graded-index (GRIN) MMF pro-
duces remarkable visible light emission characterized by
a series of spectral peaks with non-uniform spacing[15].
Numerical simulations confirm these peaks, and suggest
that even more spectacular emission occurs at long wave-
lengths, where fused silica is effectively opaque (Figure
1). These observations are puzzling: some mysterious
nonlinear optical mechanism generates and links electro-
magnetic radiation over 2 orders of magnitude in wave-
length (from > 50 to < 0.5 µm).

Here we show that these remarkable spectral fea-
tures correspond to dispersive waves generated by the
spatiotemporal oscillation of multimode solitons. The
process is inherently 3D, with spatiotemporally-evolving
nonlinear waves emitting spatiotemporally-evolving dis-
persive waves. However, we show that insights from soli-
tons of the 1D nonlinear Schrödinger equation (NSE),
can prove useful in understanding the 3D system. This
understanding suggests routes to generating ultrashort
pulses in fiber at wavelengths outside current capabili-
ties, reaching even outside the realm of optics.

Solitons are solutions to a conservative equation.
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FIG. 1. Simulated (top) and example experimental (bottom)
supercontinuum in multimode GRIN fiber. The pump pulse
at 1550 nm creates a spectrum with a series of red-shifted and
blue-shifted peaks. In the bottom panel, the y-axis reference
(0 dB) is the maximum intensity of the 1550 nm pump peak.

To use them in applications such as lasers and
telecommunications[27–38], loss must be compensated.
This is accomplished by optical amplifiers in the cavity
or transmission line. However, a periodic perturbation
caused by gain and loss can destabilize a soliton. The
origin of the instability, and the characteristic spectral
sidebands that are its signature, is the fact that a peri-
odic perturbation can phase-match dispersive wave emis-
sion at particular frequencies[39, 40]. For a perturbation
period (spacing of amplifiers, or cavity length) Zc, the
phase-matching condition is approximately:

(ksol − kdis) = 2mπ/Zc (1)

where m is an integer, and kdis is the wavevector of the
dispersive wave. ksol is the soliton wavevector, which
in the absence of higher-order dispersion is equal to
|β2|/2τ2 = π/(4Zo),where β2 is the group velocity dis-
persion, τ is the soliton duration and Zo = π/(4ksol)
is the soliton period. This quasi-phase matching leads
to resonant emission at frequencies separated from the
pump by

Ωres =
1

τ

√
8Zom

Zc
− 1 (2)

[36, 40, 41]. This result was later refined to include the
third-order dispersion of the fiber[42–44], where resonant
frequencies were found to be roots of the equation:

(ksol−kdis) = 2mπ/Zc = (
1

2
+4b23−8b43)− (−Ω2

2
−b3Ω3)

(3)
where b3 = −β3/(6|β2|τ) (β3 is the third-order disper-
sion) and Ω is the angular frequency separation from the
pump (in units of τ−1). Production of dispersive waves
is the primary limitation to the performance of soliton
fiber lasers.

Although they were predicted in the 1980s[45–49], soli-
tons consisting of pulses within multiple spatial modes

have only recently been studied experimentally[15, 22,
26]. Initial work shows that solitary waves, termed
MM solitons, can be excited in multimode graded-index
(GRIN) fibers. Similarly to1D solitons, these pulses re-
sist group-velocity dispersion and adjust adiabiatically
due to perturbations such as Raman scattering. This
behavior makes them a useful conceptual tool for un-
derstanding complex nonlinear processes that occur in
supercontinuum generation in MMFs[15, 26]. Unlike 1D
solitons, MM solitons additionally resist modal velocity
dispersion - i.e., the fact that each spatial mode in soliton
has a different group velocity. Fission of MM solitons is
spatiotemporal: it yields multiple MM solitons which can
have many different modal distributions (spatiotempo-
ral shapes). This spatiotemporal complexity makes their
dynamics much richer than 1D solitons. While they are
in some sense natural extensions of 1D NSE solitons to
MMF, they generally do not fulfill rigorous definitions
of ′soliton′ (some exceptions are known[19, 20]). Ques-
tions such as their long-range stability, how they interact
with one another, and how many modes can be involved,
remain largely unanswered.

When a beam excites multiple modes of a GRIN fiber,
it propagates through the fiber with a characteristic spa-
tial oscillation with period (pitch) P = πR/

√
2∆, where

R is the core radius and ∆ is the core-cladding index
difference[22, 50]. This oscillation causes the intensity
of the beam to periodically evolve, as in a loss-managed
soliton transmission line or laser. For a pulsed beam, os-
cillations occur as long as the pulses in each mode main-
tain co-localization and a phase relationship[22]. Hence,
a soliton containing multiple spatial modes experiences a
periodic oscillation of its peak intensity and therefore is
likely to emit resonant dispersive radiation.

We consider a simulation using the generalized multi-
mode nonlinear Schrödinger equation (GMMNLSE)[16],
with the first five radially-symmetric modes excited uni-
formly for simplicity (Figure 1). Experiments are con-
ducted as described in Ref. [15]. In both simulation and
experiment, we find that the soliton oscillation-induced
dispersive waves (ODWs) are observed for many different
initial spatial conditions, including without radial sym-
metry. Typically we observe more energetic ODWs with
more intense initial conditions (large pulse energy, tight
spatial localization, or both). Changing the initial noise
level or the pulse duration also results in different dynam-
ics. Nonetheless, provided sufficient pulse energy and
fiber length, and that multiple modes are excited, the
radiation’s qualitative features (including spectral posi-
tions) are similar. In simulations, the energy of each
ODW is distributed roughly equally among the modes,
with the red-shifted (blue-shifted) sidebands exhibiting a
slight preference for the low-order (higher-order) modes.

Representative simulation results for a 164 nJ, 400-
fs, 1550-nm MM pulse launched into a GRIN MMF are
shown in Figure 2. The results are also shown in Supple-
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FIG. 2. Dynamics of dispersive wave formation in GRIN fiber.
a) Temporal and spatial breathing of the field (inset: zoom in
near the onset of dispersive wave generation). b) Evolution
of the spectral intensity of the whole field through the same
distance. c) Energy in each dispersive wave band. The x-axis
scales are normalized to the linear spatial oscillation period
of the GRIN fiber, equal to 407 µm. These dynamics are
also shown in Supplementary Movies 1 and 2, which provide
a considerably more complete representation of the complex
spatiotemporal evolution.

mentary Movies 1 and 2. The pulse’s spatial and tem-
poral breathing are evident in Fig. 2a. Figure 2b shows
the evolution of blue-shifted ODWs (and Cerenkov ra-
diation near 300 THz (1000 nm)). Red-shifted ODWs
are generated simultaneously. They are remarkably out-
side the transparency window of fused silica (the first
appears at roughly 72 THz (4200 nm)). Attenuation is
included in the simulations with an assumed frequency
dependence α = α1550 exp−(f − c/(1550nm))/bl, where
α1550 = 0.05dB/km is the attenuation (units m−1) at
1550 nm, and bl = 0.0062 PHz (≈ 80 nm) models the in-
creasing loss into the infrared. We neglect the increasing
loss on the blue side of the spectrum. For these parame-
ters, attenuation is ≈ 0.1 MdB/km at 4200 nm. Despite
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FIG. 3. a. ODW from MMGNLSE simulations (MMGNLSE),
eqn. 4 with γ(z) as in text,1D NEE simulations, and an exper-
imental example spectrum. b. Functions used in the quasi-1D
approximation, along with the peak intensity variation of the
field in MMGNLSE simulation. c.Comparison of the peri-
odic 1D phase-matching model with multimode simulations
by the GMMNLSE and experiments in GRIN MMFs. Con-
tinuous curves are values of m in Eq. 3, plotted with the
best-fit parameter values.

this tremendous loss, red-shifted and blue-shifted ODWs
have comparable energy. This is due to the relatively
short length of the fiber (150 periods correspond to only
≈ 6 cm), and to the enormous gain the ODWs experience:
from the initial noise, the first blueshifted (redshifted)
ODW exhibits 70 dB (50 dB) net gain in 1 cm (Figure
2c). After about 100 oscillation periods, the ODWs’ ener-
gies saturate. The observed superexponential growth and
subsequent saturation of the ODW energy is in qualita-
tive agreement with the analytical prediction of the soli-
ton perturbation theory that was developed to describe
large-amplitude soliton intensity oscillations in periodi-
cally amplified transmission links[51, 52]. On the other
hand, for small amplitude oscillations of the soliton, the
theory only predicts a linear growth of the ODW with
distance[53].

To verify that the oscillations underly the ODWs, we
add oscillations artificially to a 1D NSE by making the
nonlinear coefficient a periodic function of the longitudi-
nal coordinate,
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∂A(z, t)

∂z
=

− iβ2
2

∂2A(z, t)

∂t2
+
β3
6

∂3A(z, t)

∂t3
+ iγ(z)|A(z, t)|2A(z, t)

(4)

where A(z, t) is the pulse envelope, and γ(z) is the
z-dependent nonlinear coefficient. Figure 3 compares
the result of solving this equation to the results above
found using the GMMNLSE, and experiment. Figure
3a shows the solution of equation 4 with the indicated
form of γ(z). Due to the sinusoidal oscillation of the
beam radius, one expects γ(z) to be of the form γ(z) =
γo/([rmax − rmean] + rmean sin (2πz/P ))2. We use the
RMS widths for rmax and rmean here, and rescale γo ap-
propriately, since simpler measures (e.g. mode-field di-
ameter) are not well-defined for the complex spatiotem-
poral fields that occur. At the onset of ODW generation
(≈ 145-155 periods), rmax = 14.5 µm and rmin = 5.2
µm, so that γ(z) = γo/(9.8 + 4.6 sin (2πz/P ))2 (1Db,
Fig. 3c). The observed intensity oscillations of the MM
field (MMGNLSE, Fig. 3b) are approximated better by
γo/(9.8 + 6.9 sin (2πz/P ))2 (space+time fit, Fig. 3b).
This is because the MM soliton’s duration also oscillates:
solitons lengthen when their spatial width increases and
shorten when their spatial width decreases (Fig. 2a and
inset, Supplementary Movie 1). It is this spatiotemporal
oscillation that generates the ODWs.

The experimental peak locations are consistent with
simulation and analytic theory. Figure 3c shows the re-
sults of fitting the measured and simulated peak locations
with the roots of Eq. 3 for various m. For the experi-
mental (simulated) peaks, fitting yields β2 = -26 (-25)
fs2/mm, and β3=143 (143) fs3/mm. In both cases, the
peaks are fit by the approximate model well. The dis-
crepancy is attributed to the slightly different dispersion
of the real and simulated fibers. The optimal values are
near the simulation parameters, except that the optimal
β2 is greater by 16%, which suggests that modal disper-
sion makes an effective contribution.

Although the measured ODW positions are well-
described, their amplitudes vary due to several effects
beyond both the simulations and analytic model. First,
we neglect all but 5 of the fiber’s hundreds of guided
modes. Currently, simulations with all the modes are im-
practical, and furthermore precise replication of experi-
mental initial conditions is not possible. Neglected modes
may allow phase-matching of intramodal four-wave mix-
ing (FWM) involving the 1550-nm pump, various dis-
persive waves, and Raman-shifted MM solitons. FWM
could amplify red-shifted ODWs at the expense of spe-
cific blue-shifted ODWs. In the presence of many modes,
intramodal FWM can be a complex process[54], par-
ticularly when cascades are considered[55]. Intramodal
FWM is likely why, for certain initial spatial conditions,

various low-order blueshifted ODWs are attenuated ex-
perimentally (several energy-conserving FWM processes
exist for these spectral positions). We obtained the peak
locations in Figure 3c from experiments with multiple ini-
tial conditions, in order to account for ODWs attenuated
in any particular condition. Second, because the spacing
of the ODWs is quite close to the Raman bandwidth
of fused silica, certain ODWs may experience Raman
gain from one another and from the third-harmonic light
(TH). Lastly, the dynamic range and spectral resolution
of the spectrometer limits the visibility of low-amplitude
features, and broadens narrow spectral features.

Another remaining mystery is the relatively high am-
plitude of the ODWs observed in experiments, com-
pared to simulations. Intramodal FWM may play
some role, as well as larger oscillations and TH gen-
eration. Figure 3a shows the spectrum obtained by
solving the 1D nonlinear envelope equation (NEE) with
γ(z) = γo/(15.5 + 14.5 sin (2πz/P ))2, including self-
steepening and assuming averaging of the oscillating Ra-
man integral[56]. Larger oscillations produce relatively
more intense dispersive waves, because the soliton is more
strongly perturbed. Larger oscillations occur when more
modes are coherently locked together[26], and as the ex-
periment contains much more than 5 modes, we choose
a functional form of γ(z) to model this. The dynamics
of TH generation are complex, but ultimately TH causes
higher amplitudes at nearby wavelengths.

The ODWs generated in MMF have relevance to ap-
plications. For example, by filtering particular ODWs,
one may generate pulses in wavelength regions well out-
side the gain spectrum of available fiber dopants. Tun-
ing may be achieved by changing the pump wavelength
or fiber pitch. The modulation instability gain spectrum
of a CW field at the pump wavelength overlaps with the
soliton sidebands[37]. Therefore, filtered ODWs could be
parametrically amplified (by the circulating pump pulse
or an injected CW field) if the chromatic walk-off between
the pump and ODW fields was compensated. The inclu-
sion of realistic loss in our simulations suggests that, re-
markably, mid-infrared radiation should be emitted from
short silica fibers. However, future GRIN waveguides in
chalcogenide or fluoride glasses, sapphire, or silicon would
serve better. For the broadest operation, a hollow core,
MM photonic crystal fiber would be the ultimate solution
where spatiotemporal soliton oscillation may provide a
means of generating mutually-coherent, synchronized ul-
trashort pulses in different regions of the electromagnetic
spectrum: e.g. a source of intense microwave, deep ul-
traviolet and optical pulses.

In summary, we have shown that the spatiotemporal
oscillation of nonlinear waves in GRIN multimode fiber
causes the generation of spatiotemporal dispersive waves.
These dispersive waves can be described relatively well
by simulations using the GMMNLSE, and insight can
be gained by approximating the dynamics with a quasi-
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1D model of longitudinally-varying nonlinearity. Future
work, involving more advanced models and experimen-
tal methods, can answer a few of the open mysteries
about this process, the spatiotemporal dynamics leading
to the multimode supercontinuum, and the spatiotempo-
ral structure of the dispersive waves. This work provides
a route to fiber-based ultrashort pulse sources with tun-
able wavelengths outside the range of any current fiber-
optic technique.
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