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Spatial modulation of the incident wavefront has become a powerful method to control the diffu-
sive transport of light in disordered media; however, such interference-based control is intrinsically
sensitive to frequency detuning. Here we show analytically and numerically that certain wavefronts
can exhibit strongly enhanced total transmission or absorption across bandwidths that are orders
of magnitude broader than the spectral correlation width of the speckles. Such broadband enhance-
ment is possible due to long-range correlations in coherent diffusion, which cause the spectral degrees
of freedom to scale as the square root of the bandwidth rather than the bandwidth itself.

One exciting development in optics in recent years is
the coherent control of diffusing light in a disordered
medium by shaping input wavefronts using a spatial light
modulator (SLM) [1, 2]. Initially the emphasis was on
using wavefront shaping (WFS) to focus light onto a
wavelength-scale region (speckle) behind or within the
disordered medium [3, 4], with potential applications for
imaging; the optimal input wavefront in this case can be
found by a simple sequential optimization of each pixel
on the SLM, since each contributes to the local field at
the focal spot independently. More recently there has
been progress in the more challenging problem of opti-
mizing global properties of the fields, such as the total
transmitted power through the medium [5–7]. Motiva-
tion came from theoretical concepts first formulated in
the context of mesoscopic electron transport and localiza-
tion theory [8–11], where it was predicted that in a loss-
less diffusive medium there would always exist sample-
specific “open channels” that will be transmitted almost
perfectly. A closely related effect is the coherent enhance-
ment of absorption (CEA) to near unity via WFS in a
disordered medium that on average only absorbs a small
fraction of the input light [12, 13]. Incomplete control
of the input wavefronts reduces the possible enhance-
ments [14, 15], but large enhancements are still observ-
able under realistic conditions [6, 13].

The physical basis of these coherent control effects
is manipulation of the multiple-scattering interference
in the medium. Hence these effects would seem to be
intrinsically narrowband, limiting their applications in
contexts such as power delivery, communications, or en-
ergy conversion, in which larger bandwidths may be re-
quired. The expected bandwidth is limited by the fre-
quency correlation scale, δω, which for transmission is
the inverse of the time to diffuse across the thickness
L of the medium, δω ≈ D/L2 (D = lc/d is the dif-
fusion constant in d dimensions, and l is the transport
mean free path) [16]; for CEA, δω ≈ c/la, where la is the
ballistic absorption length [12]. For a broadband signal
with bandwidth ∆ω � δω, a natural hypothesis is that

the effective number of independent frequencies would
be Meff ≈ 1 + ∆ω/δω, and that the maximal achievable
enhancement decreases as 1/Meff . Indeed this is exactly
the behavior found in experiments maximizing the focal
intensity of polychromatic light on a single speckle spot
using SLMs [17–20]. However we will show that this is
not the case for the total transmission or absorption due
to the long-range spectral correlations of coherent diffu-
sion [21–24], which are unimportant for speckle statistics
but play a major role for the global properties [16, 22, 25–
28]. These correlations dramatically reduce the effective
number of independent degrees of freedom, and instead
of the linear scaling, we find Meff ≈

√
∆ω/δω, allowing

substantial coherent control of transmission and absorp-
tion over large bandwidths. For example, for a lossless
diffusive sample with average 2% transmission, the total
transmission can be enhanced 10 times across bandwidth
∆ω ≈ 60δω; similarly for a thick diffusive sample with
average 3% absorption, the total absorption can be en-
hanced 10 times across ∆ω ≈ 60δω.

We begin by defining a broadband flux matrix, based
on the monochromatic transmission matrix t(ω) that
relates the incident field |ψin〉 to the transmitted field
|ψt〉 = t|ψin〉; the field vectors are written in the basis
of N input and output modes carrying unit flux, and
we assume N � 1. The monochromatic transmitted flux
〈ψt|ψt〉 is the expectation value 〈ψin|t†(ω)t(ω)|ψin〉 of the
Hermitian matrix t†t; it follows that the most open chan-
nel for monochromatic light corresponds to the largest
eigenvalue of t†t [8–11, 29–34]. For polychromatic light,
the role of t†t is replaced by

A =

∫
dωI(ω)t†(ω)t(ω), (1)

where I(ω) is the power spectrum of the incident light
normalized to

∫
dωI(ω) = 1. When the transmitted

flux is measured with a sufficiently-long integration time,
beating between different frequencies averages away, and
the total transmission for incident light with spectrum
I(ω) and wavefront |ψin〉 is simply 〈ψin|A|ψin〉. Since A
is still Hermitian, the optimal wavefront is again given by
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the eigenvector with the largest eigenvalue. A broadband
reflection flux matrix can be defined similarly, with r†r
replacing t†t. Note that a monochromatic open channel
is generally not an eigenvector of A, so it will not pro-
vide the optimal broadband transmission. As we shall see
later in Fig. 2(b), the optimal wavefront has its transmis-
sion enhanced rather uniformly across the target band-
width, so optimizations aiming for spectral uniformity
(such as maximin) will yield similar results.

In the diffusive regime (λ � l � L, where λ is wave-
length), each matrix t†(ω)t(ω) has a bimodal eigenvalue
density pt†t(T ) = T̄ /(2T

√
1− T ) where T̄ is the average

transmission [8–11]; the effect of absorption is considered
in Ref. [35]. The distribution has support up to T = 1,
meaning monochromatic open channels always exist in
the diffusive regime. Since the transmission matrices at
different frequencies do not commute, the eigenvalue den-
sity of the broadband matrix A will be very different.

First, we study the simpler situation when A is given
by a sum of matrices at discrete frequencies that we as-
sume are so widely separated that correlations between
them are negligible. Hence initially we take I(ω) =∑M
m=1Wmδ(ω−ωm) and assume no correlation between

the M matrices, {t(ωm) ≡ tm}. The setup for M = 2 is
illustrated in Fig. 1(a). The eigenvalue density for a sum
of large, mutually uncorrelated, non-commuting random
matrices can be treated by methods developed in free
probability theory, which generalizes the concept of sta-
tistical independence to such matrices [36, 37]. Specifi-
cally one can apply an addition rule [38] to find an im-
plicit equation for the eigenvalue density of their sum.
For the matrix A, define gA(z) as the Stieltjes transform
(resolvent) of the eigenvalue density pA; applying the ad-
dition rule, one finds that the unknown resolvent gA can
be obtained from the following implicit equation (details
in [39])

z +
M − 1

gA(z)
=

M∑
m=1

Wmg
−1

t†mtm
(WmgA(z)), (2)

with the known resolvent gt†mtm that is determined from
the bimodal distribution pt†mtm . We then apply standard

root-finding algorithms to this equation to find gA(z) and
obtain the desired eigenvalue density through the inverse
Stieltjes transform pA(T ) = − limε→0+ ImgA(T + iε)/π.
Results for the general (M > 2) cases are given in Fig. S1
in [39]. Here we examine the simpler M = 2 case for dif-
ferent combinations of weights {W1,W2}, shown as solid
curves in Fig. 1(b) (here, T̄1 = 0.027, T̄2 = 0.021). The
W1 = 0, W2 = 1 case corresponds to the monochro-
matic bimodal distribution. With increasing W1, the up-
per edge Tmax decreases as expected; the residual peaks
near T ≈W1 and T ≈W2 can be traced back to the open
channels of the constituent matrices W1t

†
1t1 and W2t

†
2t2.

From the case W1 = W2 = 1/2, we see that Tmax ≈ 0.59
is larger than the (1 + T̄ )/2 ≈ 1/2 one would obtain
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FIG. 1: Total transmission through a disordered slab for inci-
dent light with two discrete frequencies. (a) Schematic setup,
with a disordered slab in a multimode waveguide and poly-
chromatic light incident with a shared wavefront. (b) Density
of the polychromatic transmission eigenvalues as calculated
numerically by solving the wave equation (symbols) and an-
alytically using Eq. (2) from free probability theory (lines).
Numbers indicate the intensity weight W1.

from using the monochromatic open channels as the in-
put wavefront.

We perform numerical simulations to validate the an-
alytic prediction. As illustrated in Fig. 1(a), we simulate
a 2D disordered slab of thickness L and width W = 3L in
a waveguide geometry with background refractive index
n0 = 1.5 and slab permittivity ε(r) randomly sampled
between n2

0 ± 0.9 at each grid point. Using the recur-
sive Green’s function method [48], we obtain the N -by-N
transmission matrix (here N = 647) of the wave equation
[∇2 +(ω/c)2ε(r)]ψ(r) = 0 for 600 realizations of disorder,
at two frequencies ω1 = 390c/L and ω2 = 410c/L (aver-
age transmissions T̄1 = 0.027, T̄2 = 0.021; the variation
of N is negligible) that are much further than δω apart
(here ω2 − ω1 ≈ 290δω). The resulting eigenvalue den-
sities of the two-frequency matrix A, shown as symbols
in Fig. 1(b), agree perfectly with the analytic prediction
with no fitting parameters.

To see the effect of spectral correlations, we perform
simulations for a broadband input with uniform spec-
tral weights I(ω) over bandwidth ∆ω, centered at ω0 =
400c/L (where T̄ = 0.025). The numerically obtained
maximum eigenvalue Tmax of the broadband matrix A
is plotted as blue circles in Fig. 2(a), as a function of
∆ω/δω, where δω = 0.069c/L ≈ 21D/L2 is defined as
the full width at half maximum (FWHM) of the trans-
mission spectrum for the monochromatic open channel
(black line in Fig. 2(b)); note that the FWHM of the
open channel transmission coincides with the FWHM of
the speckle intensity correlation (see Fig. S2 in [39]). In
Fig. 2(a), we find that at all bandwidths, Tmax (blue
circles) is much larger than the prediction of the un-
correlated model when the effective number of indepen-
dent frequencies is taken as Meff = 1 + ∆ω/δω (green
dashed line), which itself is larger than the frequency-
averaged transmission of the monochromatic open chan-



3

0 10 20 30 400

0.2

0.4

0.6

0.8

1
M

ax
 to

ta
l t

ra
ns

m
is

si
on

0

10

20

30

40

En
ha

nc
em

en
t η

-20 -10 0 10 200

0.2

0.4

0.6

0.8

1

Tr
an

sm
is

si
on

Bandwidth Frequency

(a) (b)

No long-range correlation

Full simulation

T T

FIG. 2: Broadband transmission open channels. (a) Maxi-
mal eigenvalue Tmax of the broadband flux matrix A and the
enhancement η = Tmax/T̄ obtained from numerical simula-
tions (blue circles) and analytic theory accounting for long-
range correlation (blue line), showing the highest achievable
frequency-integrated transmission across bandwidth ∆ω. The
two lines below show the would-be maximal transmission
(green, dashed) and the transmission of the monochromatic
open channel (orange, dot-dashed) if there were 1 + ∆ω/δω
uncorrelated frequencies. Black dotted line indicates the aver-
age transmission. (b) Transmission as a function of frequency
when the input wavefront is fixed to the optimal eigenvector
with different bandwidths ∆ω.

nel, (1 + T̄∆ω/δω)/(1 + ∆ω/δω), when one assumes
Meff = 1 + ∆ω/δω (orange dot-dashed line). The trans-
mission spectra of the optimal broadband eigenvectors
cover the target bandwidth rather uniformly, as shown
in Fig. 2(b) for representative bandwidths.

To account for the spectral correlations, we adopt an
approach similar to the treatment of spatial correlations
in Ref. [6]. We hypothesize that even in the presence
of spectral correlations, the eigenvalue density can still
be described by Eq. (2), but with M replaced by some
effective number of independent frequencies, Meff < 1 +
∆ω/δω. We focus on the case where the spectral weights
Wm is uniform, for which Eq. (2) takes a simpler form

gA(z)

Meff
= gt†t

(
z +

Meff − 1

gA(z)

)
. (3)

This coincides with Eq. (3) in Ref. [14] when A is taken
to be t̃†t̃ with t̃ being a “filtered” matrix that only has a
fraction m1 = 1/Meff of the input channels (columns) of
the full matrix t, as in experiments where all output lights
are measured but only a fraction of the incident channels
is controlled by the SLM [6]. Given this equivalence, we
can use a property of the filtered matrix [14]

1

Meff
=

Var(τ̃)

Var(τ)
, (4)

to determine Meff , where τ̃ and τ are the eigenvalues of
A and of t†mtm respectively. With the broadband eigen-
value density from simulations (symbols in Fig. 3(a)), we
confirm that Eq. (4) provides the correct value of Meff

that, through Eq. (3), predicts analytical eigenvalue den-
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FIG. 3: (a) Density of the broadband transmission eigen-
values for various bandwidths, calculated numerically from
simulations (symbols; bandwidths ∆ω/δω = 0, 1.0, 2.4,
5.9, 15, 40) and analytically from Eq. (3) with an effec-
tive number Meff of independent frequencies (lines; Meff =
1.0, 1.3, 1.7, 2.4, 3.9, 6.6). (b) Meff as a function of the square-
root bandwidth, evaluated numerically from Eq. (4) (symbols)
and analytically from Eqs. (5)-(6) (line).

sities (lines in Fig. 3(a)) that agree well with the numer-
ical data. Meff obtained in this manner scales with the
square root of the bandwidth (circles in Fig. 3(b)).

The quantity Var(τ̃) can be expressed in terms of the
disorder average of certain products of four transmission
amplitudes tab, and the disorder averages can be car-
ried out analytically using impurity-averaged perturba-
tion theory (details in [39] and Figs. S3-S4). We find

1

Meff
=

∫∫
dω1dω2

∆ω2

C(T )(ω1, ω2)

C(T )(ω0, ω0)
, (5)

where C(T )(ω1, ω2) is the mean-normalized spectral cor-
relation 〈Ta(ω1)Ta(ω2)〉/〈Ta(ω1)〉〈Ta(ω2)〉−1 of the total
transmission Ta =

∑
b |tba|2, with the brackets denot-

ing average over disordered samples; the dependence on
mode index a drops out due to the normalization. In our
system, C(T ) is well described by (see Fig. S4(a) in [39])

C(T )(ω1, ω2) =
1

NT̄

[
2

x

sinh(x)− sin(x)

cosh(x)− cos(x)
− T̄

]
, (6)

where x =
√

2|ω1 − ω2|L2/D. In Eq. (6), the first term
is the long-range correlation that decays as |ω1−ω2|−1/2

(see Ref. [23]), while the second term is a finite-T̄ cor-
rection [39, 49]. Eqs. (5)-(6) provide an analytic expres-
sion to calculate Meff without free parameters and per-
fectly agrees with the Meff obtained from simulations,
as shown in Fig. 3(b). The blue solid line in Fig. 2(a)
is calculated with this analytic expression of Meff , and
it explains the much larger potential transmission en-
hancement through WFS than expected from the uncor-
related model. Specifically, when ∆ω falls in the regime
1 �

√
∆ω/δω � 1/T̄ , the relevant values of C(T ) are

dominated by the |ω1−ω2|−1/2 tail in the long-range con-
tribution, giving rise to the scaling of Meff ≈

√
∆ω/δω

and a larger Tmax. Note that Eqs. (5)-(6) show that Meff

and Tmax depend only on ∆ω and T̄ .
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FIG. 4: Broadband coherently enhanced absorption (CEA).
(a) Maximal frequency-integrated absorption 1−Rmin and the
enhancement η = (1 − Rmin)/(1 − R̄) obtained numerically
(blue circles) and analytically (blue line) across bandwidth
∆ω. The two lines below show the would-be maximal absorp-
tion (green, dashed) and the absorption of the monochromatic
CEA mode (orange, dot-dashed) if there were 1 + ∆ω/δω un-
correlated frequencies. Black dotted line indicates the average
absorption. Inset shows schematic setup of the system; a re-
flecting boundary on the right ensures that transmission is
zero and absorption is 1 − R. (b) Meff as a function of the
square-root bandwidth, evaluated numerically from Eq. (4)
(symbols) and analytically from Eqs. (5) and (7) (line).

The presence of weak absorption modifies the long-
range spectral correlation in transmission but does not
change the |ω1 − ω2|−1/2 scaling [50, 51], so the above-
mentioned effects persist. In fact, in absorbing systems,
long-range correlations in reflection [24] can help the
broadband operation of coherently enhanced absorption
(CEA). Consider a thick diffusive scattering medium with
λ � l �

√
lla/d < L, where la is the ballistic absorp-

tion length. As the thickness L is larger than the diffu-
sive absorption length La =

√
lla/d, the transmitted flux

is exponentially small, so any light that is not reflected
can be considered absorbed. As l � la, most incident
light is reflected before it propagates far enough to be
absorbed, so the average absorption is low. However,
there exist eigenchannels that can be nearly completely
absorbed at one frequency when the number of input
channels (i.e. degrees of freedom to be controlled) is large
enough that N2l/la � 1 [12, 52]. The minimum reflec-
tion (corresponding to the maximum absorption) is the
smallest eigenvalue of r†r, and in the N → ∞ limit the
monochromatic eigenvalues follow a known bimodal dis-
tribution, pr†r(R) = 2a

√
(1−R)/(aR)− 1/(π(1−R)2),

where a ≡ l/la � 1 [53, 54]. For broadband light with
spectrum I(ω), we instead look for the eigenvalues of A
as defined in Eq. (1) just with t(ω) replaced by r(ω).

We perform numerical simulations for the geometry
shown in the inset of Fig. 4(a) with thickness L and
width W = 0.43L and with a weak uniform absorp-
tion Im(ε) = 3 × 10−5 in the diffusive medium (corre-
sponding to a = 2 × 10−4, R̄ = 0.97, and N = 323
near ω0 = 1400c/L). Again, we consider broadband
incident light with uniform spectral weights I(ω) over

bandwidth ∆ω, and numerically evaluate the reflection
matrices r(ω) and the eigenvalues of the broadband flux
matrix A. The maximum absorption, 1 − Rmin, is plot-
ted as blue circles in Fig. 4(a) as a function of ∆ω/δω,
where δω = 0.14c/L ≈ 12c/la is defined as the FWHM
of the absorption spectrum for the monochromatic CEA
channel (see Fig. S5(a) in [39]). Similar to the broadband
lossless transmission, here we find the maximal absorp-
tion to be much larger than the prediction if one were
to ignore long-range spectral correlations (green dashed
and orange dot-dashed lines).

The density of broadband reflection eigenvalues is
well described by Eq. (3) with t†t replaced by r†r
and with Meff given by Eq. (4) (see Fig. S5(b)
in [39]), confirming the hypothesis that one can use
an effective number of independent frequencies to de-
scribe the broadband eigenvalue distribution. Analyt-
ically, Meff is again given by Eq. (5), just with C(T )

replaced by the spectral correlation C(R)(ω1, ω2) ≡
〈Ra(ω1)Ra(ω2)〉/〈Ra(ω1)〉〈Ra(ω2)〉−1 of the total reflec-
tion Ra =

∑
b |rba|2, which in our system is well described

by (see Fig. S4(b) in [39])

C(R)(ω1, ω2) =
1− R̄

NR̄(1 + R̄)

[
2

1 + y
− (1− R̄)

]
, (7)

where y = Re
√

1 + i|ω1 − ω2|la/c. Here, the first term
decays as |ω1 − ω2|−1/2 and is the long-range reflection
correlation derived in Ref. [24], while the second term is a
correction for finite 1−R̄ [39]. Eqs. (5) and (7) provide an
analytic expression for Meff and is plotted as the red line
in Fig. 4(b), with its prediction of the maximal absorp-
tion plotted as the blue line in Fig 4(a). When the band-
width ∆ω falls in the regime 1�

√
∆ω/δω � 1/(1−R̄),

the C(R) is dominated by the |ω1 − ω2|−1/2 tail in the
long-range contribution, and Meff scales as

√
∆ω/δω.

Although using a single spatial wavefront to control
broadband light introduces a loss of control, we have
shown that long-range spectral correlations of the total
transmission and reflection in the diffusive regime [55]
significantly reduce this loss, making strong enhance-
ments possible across bandwidths ∆ω much larger than
the spectral correlation width δω of the medium. Spatial
WFS is typically realized in optics, but this effect also ap-
plies to the diffusive transport of electrons and acoustic
waves. The incomplete spatial control of the input due
to limited numerical aperture or finite illumination area
on a wide slab can be incorporated in our formalism by
replacing t and r with the filtered matrices t̃ and r̃ [6, 14];
see [39] for details. The results for uncorrelated matrices
(Eq. (2)) can also treat spatially incoherent light with
multiple uncorrelated transverse modes or unpolarized
light with two independent polarizations. Furthermore,
the eigenproblem formalism in the present work can be
extended to study the total transmitted flux at a given
time of flight [39].
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