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We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a
polariton fluid to cool mechanical modes coupled to a single pre-cooled phonon mode via external
modulation of the substrate of the mechanical resonator. This approach permits to cool phonon
modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum
regime from room temperature.

Quantum optomechanics has witnessed rapid progress
in recent years, resulting in the successful cooling of me-
chanical modes to their ground state of motion with a
combination of cryogenic techniques and optical sideband
cooling realized in a number of systems [1–3]. This opens
up a broad spectrum of applications ranging from force
and field sensing to tests of the foundations of physics, in-
cluding the exploration of the elusive boundary between
the quantum and the classical world, studies in quantum
thermodynamics, and more.

The recent demonstration of parametric coupling of
mechanical modes deep in the quantum regime offers the
opportunity to explore a number of aspects of multimode
phononics, such as the generation of nonclassical states of
mechanical motion and the development of phonon inter-
ferometry [4, 5]. While optomechanical sideband cooling
[6, 7] is typically applied to a single mechanical mode, in
such multimode applications, and more generally in the
emerging area of nonlinear phononics [8–13] there is much
interest in simultaneously cooling two or more modes of
relatively arbitrary frequencies [14].

We show that this can be achieved in a cooling cycle
that relies on the properties of the normal modes (polari-
tons) of optomechanically coupled optical and mechani-
cal fields [15, 16]. Depending on the frequency detuning
between the optical and mechanical fields these are re-
dominantly either photonic or phononic. In the photonic
limit they are coupled to a thermal reservoir that is es-
sentially at zero temperature, and in the mostly phononic
state to a reservoir at the temperature of the mechani-
cal substrate. In that limit they can also be easily me-
chanically coupled to any other mode of oscillation of
the mechanics by forcing an external modulation of the
substrate of the mechanical resonator, as was experimen-
tally realized in Ref. [4]. The advantage of this approach
is that specific requirements for the optomechanical cou-
pling and frequencies apply only to the two modes (op-
tical and mechanical) comprising the polaritons, with no
restrictions on the additional mechanical modes to be
cooled.

The proposed cooling cycle uses a precooled polariton
mode as a “polariton fluid” whose nature is first changed
from photon-like to phonon-like by controlling the pump-

cavity detuning. When in the phonon-like state it is
parametrically coupled to the phonon mode to be cooled
for a duration such that an approximate coherent state
transfer is achieved between them. The detuning is then
adiabatically returned to a value for which the polariton
is photon-like. Its thermalization at the temperature of
the photon bath (with Ta ≈ 0 and thermal occupation
na ≈ 0 at optical frequencies [17]) irreversibly dumps the
excitations that it carried away from the mechanics to
the environment, thereby completing the extraction of
energy from that mode.

This system is reminiscent of a non-equilibrium heat
pump [18], with the important difference that instead of
changing the temperature of the cooling fluid, we mod-
ify its environment via the polariton dispersion relation
[19]. The role of the expansion phase of the refrigerant is
achieved by changing the polariton fluid from photon-like
to phonon-like, and the compression-like phase by the re-
verse process . The heat exchange between the mode to
be cooled and the fluid is achieved by phonon population
transfer, and heat disposal is achieved by cavity dissipa-
tion of the polariton fluid in its photon-like form.

Model. We consider a generic arrangement where a
single mode of an electromagnetic cavity is coupled op-
tomechanically to a single vibration mode of a mechani-
cal resonator, which in turn can be coupled to a second
mechanical oscillation mode via external actuation, with
total Hamiltonian

H = Hom +Hst +Hdis (1)

where Hom accounts for the radiation pressure coupling
between the cavity mode and one of the mechanical
modes, Hst describes the interaction between the me-
chanical modes, and Hdis accounts for the intracavity
field and mechanical oscillators damping of rates κ and
γ, with κ ≫ γ typically.

The optomechanical component of the system consists
of a cavity mode of frequency ωa coupled to a mechanical
mode of frequency ωb. It is driven by an optical field of
frequency ωp and amplitude αin. We assume that the
intracavity field is strong enough that it can be described
as the sum of a large mean field α and small quantum
fluctuations. In a frame rotating at ωp the Hamiltonian
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Hom can then be linearized as

Hom = −~∆(t)â†â+ ~ωbb̂
†b̂+ ~g(b̂+ b̂†)(â+ â†) (2)

where the bosonic annihilation operators â and b̂ ac-
count for the fluctuations of the optical and mechani-
cal mode around their mean amplitudes α and β. The
radiation pressure interaction is quantified by the con-
stant g = αg0, with g0 the single-photon optomechan-
ical coupling strength, and the laser-cavity detuning
∆(t) = (ωp − ωa)(t)− 2βg0 includes the mean radiation-
pressure-induced change in resonator length. In steady
state and for small damping, we have α ≈ αin/∆ and
β ≈ −g0α

2/ωb. We take α to be real, which can be
achieved for an appropriate phase of the pump field.

The coupling between the phonon mode ‘b’ at fre-
quency ωb and a second vibration mode ‘c’ at frequency
ωc can be realized by actuating the substrate at a fre-
quency ωs close to their frequency difference, ωs ≈
ωc − ωb [4]. The resulting coupling is described in a
rotating frame at the modulation frequency ωs and in
the rotating wave approximation by a "state transfer"
Hamiltonian

Hst = ~δĉ†ĉ+ ~Ω0(t)(b̂
†ĉ+ ĉ†b̂) (3)

where ĉ is the annihilation operator for mode ‘c’, δ =
ωc−ωs ≃ ωb, and Ω0 is the parametric coupling strength
of the two modes proportional to the amplitude of oscil-
lations of the substrate.

In the absence of mechanical coupling, Ω0 = 0, the sys-
tem is driven by the familiar linear optomechanical inter-
action only. We focus on the red-detuned regime ∆ < 0,
which in general leads to stable dynamics for small de-
cay rates, and perform a Bogoliubov transformation to
diagonalize Hom in terms of polaritons described by the
bosonic annihilation operators Â and B̂ [15, 16]. This
gives

Hom = ~ωA(∆)A†A+ ~ωB(∆)B†B, (4)

with frequencies

ωA,B(∆) =

[

∆2 + ω2

b ±
√

(∆2 − ω2

b )
2 − 16g2∆ωb

2

]1/2

.

(5)
A plot of ωA,B(∆) can be found for instance in Ref. [15].

The photon-phonon polaritons are coherent superpo-
sitions of the cavity field ‘a’ and the mechanical mode
‘b’ [20]. For ∆ ≪ −ωb, the low-energy polariton branch
‘B’, characterized by the bosonic annihilation operator
B̂ and the frequency ωB(∆), describes phonon-like exci-
tations, with ωB approaching ωb. In contrast, on the
other side of the avoided crossing, −ωb ≪ ∆ < 0,
and in the weak coupling regime g/ωb ≪ 1, the oper-
ator B̂ annihilates photon-like excitations of frequency
ωB ∼ −∆. The opposite holds for the polariton branch

‘A’, which is photon-like for frequencies far red-detuned
from ∆ = −ωb, and phonon-like near cavity resonance.

Cooling cycle. We now explain how the polariton
branch ‘A’ can be exploited as a quantum heat pump
refrigerant to cool an arbitrary mechanical mode ‘c’ de-
tuned in frequency from the bare mechanical mode ‘b’.

We assume that the photon and phonon modes ‘a’
and ‘b’ are initially thermalized at temperatures Ta ≈ 0
and Tb [21]. The cooling cycle comprises four steps: (1)
adiabatic change in the frequency ωA of the polariton
fluid, with an effect similar to the expansion step in con-
ventional heat pumps, and loosely called adiabatic ‘ex-
pansion’ in the following for that reason; (2) “heat ex-
change” between the fluid and the mechanical mode to
be cooled; (3) adiabatic change in ωA to achieve an ana-
log of the compression stage (adiabatic ‘compression’);
and (4) thermalization of the fluid to Ta ≈ 0.

The ‘expansion’ is realized by adiabatically changing
the detuning ∆(t) from a large negative value ∆i ≪ −ωb,
where the polariton ‘A’ is photon-like (Â ≈ â), to a small
negative value −ωb ≪ ∆f < 0 close to 0, where it is

phonon-like (Â ≈ b̂). The mechanical coupling is absent
at this stage, Ω0 = 0. This transformation conserves the
initial thermal populations of the two polariton modes:
the polariton ‘A’ remains unpopulated since Ta ≈ 0 while
the polariton ‘B’ stays at the temperature of mode ‘b’.
Since the polaritons have then exchanged their nature,
this transformation effectively swaps the thermal pop-
ulation between photon and phonon fluctuations. The
duration τ1 of this step should be slow enough to guar-
antee the adiabaticity of the evolution, τ1 ≫ 1/(2g), but
fast compared to the photon and phonon damping times,
τ1 ≪ 1/κ, 1/γ.

Once the detuning has reached the value ∆f the cou-
pling Ω0(t) between the mechanical modes ‘b’ and ‘c’ is
switched on for a duration τ2. (For simplicity we consider
a square pulse, Ω0(t) = Ω0.) At this point the polariton
‘A’ is phonon-like and well approximated by the phonon
mode ‘b’. In the absence of other interactions, the Hamil-
tonian (3) accomplishes a perfect quantum state transfer
between the modes ‘b’ and ‘c’ for an appropriate interac-
tion time. For modes initially in thermal states the result
can be regarded effectively as a "heat exchange" between
them. In practice both optomechanical coupling and dis-
sipation are still effective during τ2, though, so this is
only approximately correct. However these additional
effects do not change the dynamics significantly for large
detunings between the photon and phonon modes and a
short enough τ2, as confirmed by numerical simulations
that account for the full dynamics.

We now estimate the mean excitation transferred be-
tween the two modes from the state transfer Hamiltonian
only, noting that In this limit, and for Ω0 constant during
τ2, the dynamics of the two-mode system is governed by
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the Heisenberg equations of motion

db̂

dt
= −i(ωbb̂ +Ω0ĉ);

dĉ

dt
= −i(δĉ+Ω0b̂), (6)

which yield readily

〈N̂c〉(t) = 〈N̂c〉(0)+ [〈N̂b〉(0)−〈N̂c〉(0)]
Ω2

0

Ω2
sin2(Ωt). (7)

Here N̂j is the number operator for mode ‘j’ and Ω =
[(ωb − δ)2/4 + Ω2

0
]1/2 plays the role of an effective Rabi

frequency. The maximum exchange of excitation between
the two modes occurs after the interaction time τ2 =
π/(2Ω).

The third, compression-like step is an adiabatic change
that returns the polariton mode ‘A’ to its photon-like
nature by changing ∆f back to ∆i. As for the previous
adiabatic step, this must take place in a time τ3 slow
enough to guarantee adiabaticity, but fast enough that
thermal relaxation remains negligible. The mechanical
interaction is off again for the remainder of the cycle.

The last step is the thermalization of the now photon-
like polariton with its reservoir, effectively at Ta ≈ 0,
over a time τ4 ≫ κ−1. Repeating the full cycle allows
one in principle to achieve the ground state cooling of
mode ‘c’ from room temperature.

Numerical simulations. This intuitive description of
the cooling cycle is confirmed by full numerical simula-
tions of the master equation

dρ

dt
= −

i

~
[Hom+Hst, ρ]+κLâ[ρ]+γ

{

Lb̂[ρ] + Lĉ[ρ]
}

, (8)

that includes all three modes. Dissipation is described
via the super-operators

Lâ[ρ] = (na + 1)[â†âρ− âρâ† + h.c.)

+na[ââ
†ρ− â†ρâ+ h.c.), (9)

and similarly for Lb̂[ρ] and Lĉ[ρ], where nj is the average
thermal occupation of mode j.

Results of such a simulation are summarized in Fig. 1.
In this example, the initial phonon number in the mode
‘c’ to be cooled is 〈N̂c〉(0) = nc = 12, a relatively low
value chosen for computational convenience. The po-
lariton mode ‘A’ is photon-like, with na = 0 at optical
frequencies., but in this example it is given the unrealis-
tically large value 〈N̂A〉(0) ≈ na = 0.5 to illustrate the
role of thermal photons. In contrast the polariton mode
‘B’ is phonon-like, with an initial mean phonon number
〈N̂B〉(0) = 2. It is often the case that the laser-cooled
mechanical mode is the lowest frequency one, so we have
taken ωc > ωb. The fact that 〈N̂B〉(0) < 〈N̂c〉(0) can
then be thought of as resulting from the precooling of
the phonon mode ‘b’. Note however that except for its
small non-adiabatic and dissipative coupling to mode ‘A’,
the polariton mode ‘B’ plays no active role in the oper-
ation of the heat pump, so its initial population is of no
significant importance.
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Figure 1. Dynamics of the mean polariton populations 〈N̂A〉

(green dashed line) and 〈N̂B〉 (dotted red line) and of the

population 〈N̂c〉 of the phonon mode ‘c’ (solid blue line) for
a few cooling cycles deep in the quantum regime. Here ωb =
δ = 2 × 103, κ = 40, ∆i = −6 × 103, ∆f = −6 × 102,
g = Ω0 = 2 × 102, τ1 = τ3 = 4 × 10−2, τ2 = 8 × 10−3, and
τ4 = 0.1, with frequencies in units of the phonon decay rate
γ and times in units of γ−1. The initial average populations
are 〈N̂A〉(0) = 0.5, 〈N̂B〉(0) = 2 and 〈N̂c〉(0) = 12. The
four dots on the horizzontal axis mark the end of the first
’expansion’ step and beginning of ‘heat exchange’, the end of
heat exchange and beginning of the ‘compression’ step, the
beginning of thermalization, and the end of the first cooling
cycle.

For short times t ≤ τ1 both 〈N̂A〉 and 〈N̂c〉 remain es-
sentially constant. During that time ∆(t) is adiabatically
changed from ∆i to ∆f , and the polariton and phonon
mode ‘c’ are uncoupled. The adiabaticity of the ‘expan-
sion’ step is confirmed by the fact that 〈N̂A〉 remains ap-
proximately constant, with modest non-adiabatic transi-
tions between the two polariton modes.

In the short interval between τ1 < t ≤ τ1 + τ2 the in-
teraction between modes ‘b’ and ‘c’ is switched on. Since
Â ≈ b̂ at ∆f , we observe an almost perfect "heat trans-
fer" occurring between the the polariton ‘A’ and mode
‘c’. The mean population of polariton ‘B’ still remains
essentially unchanged, which confirms that a simple two-
mode model is an excellent approximate description of
that step.

The third stroke, of duration τ3, is a near-adiabatic
change of ∆ back to ∆i. Here non-adiabatic effects are
most apparent in oscillations of 〈N̂B〉(t). This lasts until
γt ≈ 0.08 in Fig. 1. Finally, heat dissipation into the
environment results in the decay of the mean population
〈N̂A〉(t) of mode ‘A’, which is now photon-like, to its ther-
mal equilibrium value na. At the same time, though, the
phonon mode ‘c’ is also coupled to a thermal reservoir
and consequently 〈N̂c〉(t) slowly increases. Subsequent
cooling cycles permit to keep it at a value near the quan-
tum ground state, as illustrated by the next two cooling



4

cycles in Fig. 1. (Note that although for the parameters
of the simulation τ1,3κ ≈ 1 optical decay has no detrimen-
tal effect during the ‘expansion’ and ‘compression’ stages
since it extracts excitations from the system. In addition
its contribution to non-adiabatic effects is small [22].)

Cooling limit. To evaluate the cooling limit we first
consider the "heat exchange" step. For the small nega-
tive detuning ∆f , the polariton mode ‘A’ consists almost
entirely of the phonon mode ‘b’. Also, the polariton mode
‘B’ is far detuned and remains essentially uncoupled, as
we have seen. Under these conditions we can approxi-
mate the Hamiltonian (3) by

Hst ≈ ~δc†c+ ~Ω′
0(t)(Â

†c+ c†Â), (10)

a form that results from carrying out the Bogoliubov
transformation that diagonalizes Hom, neglecting the
counter-rotating terms in the resulting interaction be-
tween the polariton ‘A’ and phonon mode ‘c’, and omit-
ting the coupling to polariton ‘B’ altogether. The effec-
tive coupling strength is Ω′

0
= uΩ0, with u ≈ 1 for small

negative detunings ∆f and g < |∆f | [16] is the Bogoli-
ubov transformation coefficient between modes ‘A’ and
‘b’. We have confirmed numerically that 〈N̂c〉(t) obtained
from Eq. (10) and from a full three-mode analysis coin-
cide almost perfectly for our choice of parameters.

The expression for the mode dynamics obtained from
the Hamiltonian (10) has the same analytical form as
Eq. (7), with Ω0 → Ω′

0
. For the jth cooling cycle and the

optimal choice Ω′t = π/2, with Ω′ = [ωA(∆f ) − δ]2/4 +

Ω′2
0 ]

1/2, the mean population 〈N̂c,out〉j at the end of the

heat exchange step is related to its value 〈N̂c,in〉j prior
to that step by

〈N̂c,out〉j = (1− η)〈N̂c,in〉j + η〈N̂A,in〉j , (11)

where η = (Ω′
0
/Ω′)2 and 〈N̂A,in〉j is the mean number of

‘A’ polaritons. If it is properly thermalized while photon-
like at the end of the previous cooling cycle we have
〈N̂A,in〉j = na, independently of j.

We can determine 〈N̂c,in〉j by noting that between heat
exchange steps the phonon mode is decoupled from the
polaritons and is only subject to thermalization, so that

〈N̂c,in〉j = nc + r(〈N̂c,out〉j−1 − nc), (12)

where r = exp[−γ(τ1 + τ2 + τ3 + τ4)]. Substituting
Eq. (12) into Eq. (11) and taking the asymptotic limit
〈N̂c,out〉j−1 = 〈N̂c,out〉j gives the cooling limit

〈N̂c,out〉∞ =
1

1− r(1 − η)
[ηna + (1− r)(1 − η)nc] .

(13)
The contribution of the phonon thermal noise is fully sup-
pressed for η = 1, which corresponds to the resonance
condition ωA(∆f ) = δ. With ωA(∆f ) ≈ ωb, this gives
ωs = ωc − ωb, which is precisely the resonance condi-
tion for the substrate modulation frequency to establish
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Figure 2. Example of two-mode cooling, showing the dynam-
ics of the mean polariton population 〈N̂A〉 (green dotted line)

and of the populations 〈N̂c〉 (solid red line) and 〈N̂d〉 (dashed
blue line) of the phonon modes ‘c’ and ‘d’ for two cooling cy-
cles deep in the quantum regime. The parametric coupling
between the modes ‘A’ and ‘c’ occurs at times γt = 0.004
and 0.0416, and the parametric coupling between ’A’ and ‘d’
at times γt = 0.02228 and 0.0604. Same parameters as in
Fig. 1, except that γ = κ/400. The initial average popula-

tions are 〈N̂A〉(0) = 0, 〈N̂c〉(0) = 10, and 〈N̂d〉(0) = 7.4. The
frequencies of modes ‘c’ and ‘d’ are ωc = 1.5ωb and ωd = 2ωb.

the state transfer coupling between the phonon modes
‘b’ and ‘c’. This ideal case yields the fundamental limit
〈N̂c,out〉∞ = na. That is, phonon mode ‘c’ can ideally be
cooled to the temperature of the electromagnetic field,
Ta ≈ 0 for visible radiation.

Summary and outlook. In conclusion, we have pro-
posed and analyzed a variation of a heat pump that ex-
ploits the dispersion relation of a polariton fluid to cool
mechanical modes of arbitrary frequency in an optome-
chanical system. This can also be understood as a form
of reservoir engineering [23, 24] where changing the na-
ture of a polariton results in its coupling to reservoirs of
different effective temperatures. Importantly, this cool-
ing scheme can readily be extended to a multiplicity of
modes by cycling the value of the mechanical coupling
with the mode ‘b’ from one to the next. Figure 2 shows
a simulation in which the polariton heat pump is used to
cool two mechanical modes ‘c’ and ‘d’.

Although we have considered numerically only the fi-
nal stages of cooling, where the mode starts with only a
few phonons, the technique can work in principle starting
from room temperature, although the mechanical mode
that combines with the optical field to form the polariton
fluid does need to be colder. A full quantum simulation
of the process starting from room temperature is beyond
the capabilities of a numerical simulation, but these first
stages of cooling could be described classically straight-
forwardly, for instance in the framework of a classical
Fokker-Planck formalism [25].
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