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The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe1−xCox)2B al-
loys are elucidated using first-principles calculations within the disordered local moment model. Excellent
agreement with experimental data is obtained. The anomalies are associated with the changing band occupa-
tions due to Stoner-like band shifts and with selective suppression of spin-orbit “hot spots” by thermal spin
fluctuations. Under certain conditions the anisotropy can increase, rather than decrease, with decreasing mag-
netization. This peculiar electronic mechanism is in stark contrast with the assumptions of the existing models.

Magnetocrystalline anisotropy (MCA) is one of the key
properties of a magnetic material [1]. Understanding of its
temperature dependence is a challenging theoretical problem
with implications for the design of better materials for perma-
nent magnets [2], heat-assisted magnetic recording [3], and
other applications. While simple models explain the usually
observed monotonic decline of MCA energy K with increas-
ing temperature [4], in some magnets MCA behaves very dif-
ferently and can even increase with temperature. Such anoma-
lous K(T ) dependence makes some materials useful as perma-
nent magnets and can potentially facilitate specialized appli-
cations.

Well-known anomalies in the temperature dependence of
MCA include spin reorientation transitions (SRT) in cobalt
[5] and MnBi [6], which have been linked with thermal ex-
pansion; an SRT in gadolinium, which may be due to the com-
petition of different-order terms in the angular dependence of
MCA [7]; SRT in R2Fe14B hard magnets [8] due to the or-
dering of the rare-earth spins at low T ; and SRT in thin films
[9, 10] attributed to the competition between the bulk and sur-
face contributions to MCA. Competition between single-site
and two-site MCA can also lead to an SRT [11].

MCA in metallic magnets is rarely dominated by the single-
ion mechanism leading to the K ∝ M3 dependence on the
magnetization [4]. For example, two-ion terms in 3d-5d alloys
like FePt modify this dependence to K ∝ M2.1 [12, 13]. Clear
understanding of the anomalous temperature dependence of
MCA has been so far limited to the cases when competing
contributions to MCA can be sorted out in real space, such as,
for example, bulk and surface terms in thin films. In contrast,
understanding of MCA in itinerant magnets usually requires a
reciprocal space analysis [14].

One such system is the disordered substitutional
(Fe1−xCox)2B alloy which exhibits three concentration-
driven SRTs at T = 0, a high-temperature SRT at the Fe-rich
end, and a strongly non-monotonic temperature dependence
at the Co-rich end with a low-temperature SRT [15, 16]. The
SRT’s at T = 0 were traced down to the variation of the
band filling with concentration combined with spin-orbital
selection rules [16]. Here we elucidate the unconventional

mechanism leading to the spectacular anomalies in the tem-
perature dependence of MCA in this system and show that
they stem from the changes induced by the spin fluctuations
in the electronic structure. We will see that under certain
conditions MCA can increase, rather than decrease, with
decreasing magnetization.

Our calculations are based on the Green’s function-based
linear muffin-tin orbital method [17] with spin-orbit coupling
(SOC) included as a perturbation to the potential parameters
[16]. Thermal spin fluctuations are included within the disor-
dered local moment (DLM) model [18, 19], which treats them
within the coherent potential approximation (CPA) on the
same footing with chemical disorder. The DLM method has
been previously used to calculate the temperature-dependent
MCA energy K in systems like FePt [20, 21] and YCo5 [22].
Although the K(T ) dependence in these metals does not fol-
low the Callen-Callen model [4] designed for materials with
single-ion MCA, it is still monotonically decreasing. In con-
trast, we will see that the changes in the electronic structure
with temperature leads to strong anomalies in (Fe1−xCox)2B.
Our implementation of the DLM method is described in Ref.
23. (See Supplemental Material [24] for additional details.)

Apart from the inclusion of spin disorder, the computational
details are similar to Ref. 16. In particular, the large overesti-
mation of the magnetization in density-functional calculations
for Co2B (1.1 µB compared to experimental 0.76 µB per Co
atom) is corrected by scaling the local part of the exchange-
correlation field for Co atoms by a factor 0.8 at all concentra-
tions. This treatment is consistent with spin-fluctuation theo-
ries showing that spin fluctuations tend to reduce the effective
Stoner parameter [35, 36] and allows us to take into account
the resulting changes in the electronic structure.

Magnetism in (Fe1−xCox)2B alloys is much more itinerant
compared to systems like FePt; the spin moments of Fe and
especially Co atoms are not rigid in density-functional calcu-
lations. To implement spin disorder within the DLM method,
we make a simple assumption that the spin moments of both
Fe and Co at finite T can be taken from the ferromagnetic state
at T = 0. This assumption is based on the expectation that
thermal spin fluctuations to a large extent restore the “soft”
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spin moments [35]. On the other hand, the variation of the
electronic structure with T should not be very sensitive to the
details of the spin fluctuation model. For simplicity, a similar
approach is used for the (Co1−xNix)2B system, including the
small spin moments on the Ni atoms.

The distribution function for spin orientations is taken in
the Weiss form: pν(θ) ∝ exp(−αν cos θ), where θ is the an-
gle made by the spin with the magnetization axis, and ν labels
the alloy component. The temperature dependence of the co-
efficients αν is determined using the calculated effective ex-
change parameters as explained in the Supplemental Material
[24]. Fermi-Dirac smearing is neglected, because the effects
of spin fluctuations are overwhelmingly stronger.

The results of K(x, T ) calculations shown in Fig. 1, which
were obtained with fixed lattice parameters, are in excellent
agreement with experimental data [15]. Both the temperature-
driven SRT on the Fe-rich end and the non-monotonic temper-
ature dependence on the Co-rich end in (Fe1−xCox)2B alloys
are captured (see Supplemental Material [24] for a direct com-
parison). For (Co0.9Ni0.1)2B the MCA energy at T = 0 is large
and negative in agreement with experiment [15], although the
initial decline of K(T ) similar to Co2B is not observed in ex-
periment. The finite slope in the K(T ) curves at zero temper-
ature is due to the classical treatment of spin fluctuations. We
have explicitly verified that the effect of thermal expansion on
K(T ) in Fe2B and Co2B is almost unnoticeable.

FIG. 1. Calculated temperature dependencies of MCA energy K in
(Fe1−xCox)2B and (Co0.9Ni0.1)2B alloys.

The effects of spin disorder on the electronic structure can
be understood from Fig. 2 which shows the partial minority-

spin Bloch spectral function at x = 0.95 for T = 0 and
T/TC = 0.7. Here at the Co-rich end all bands are easily
identifiable at T/TC = 0.7 and relatively weakly broadened.
In addition, they are shifted down relative to their position
T = 0, which is representative of itinerant Stoner systems.
In contrast, at the Fe2B end the bands are strongly broadened
by spin fluctuations, so that most bands in the 1 eV window
below EF are only barely visible (see Supplemental Material
[24]). The large difference in the degree of band broadening
between the Fe-rich and Co-rich ends is due to the 2.5-fold
difference in the magnitude of the spin moments. The effect
of phonon scattering on band broadening in (Fe1−xCox)2B al-
loys is likely much smaller and is neglected here.

FIG. 2. Partial minority-spin spectral function for the transition-
metal site in (Fe0.05Co0.95)2B at (a) T = 0, and (b) T/TC = 0.7.
SOC is included, M ‖ z, and energy is in eV. Color encodes the or-
bital character of the states. The intensities of the red, blue and green
color channels are proportional to the sum of m = ±2 (xy and x2−y2),
sum of m = ±1 (xz and yz), and m = 0 (z2) character, respectively.

The usual expectation is that spin disorder should reduce
MCA as a result of averaging over spin directions. Such “nor-
mal” behavior is seen, for example, at x = 0.3 in Fig. 1.
This expectation is violated at many concentrations: K(x, T )
is non-monotonic with T at 0 ≤ x ≤ 0.2, 0.5 ≤ x ≤ 0.6, and
0.9 ≤ x ≤ 1, which we will call “anomalous.” At x ≤ 0.6
the anomalous temperature dependence of K at a given x fol-
lows the variation in K with increasing x at T = 0. For ex-
ample, K(0.2, 0) > K(0.1, 0) and K(0.1, T ) anomalously in-
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creases with T . At x ≥ 0.9 the anomalous variation is oppo-
site to the trend in K(x, 0) with increasing x. To understand
this difference, we first need to examine the effect of disorder
on MCA.

Fig. 3 compares K(x, 0) calculated within the virtual crystal
approximation (VCA) with CPA results for (Fe1−xCox)2B [16]
and (Co1−xNix)2B systems [37]. Note that in the (Co1−xNix)2B
system the spin moments vanish near 40% Ni in agreement
with experiment [38]. In addition to the MCA energy K,
Fig. 3 also shows its approximate spin decomposition Kσσ′

obtained from the SOC energy [16]. In this system with
more than half-filled 3d shell, the variation of MCA with x

is largely controlled by the K↓↓ term, i. e. by the LzS z mixing
of the minority-spin states. Substitutional disorder strongly
suppresses MCA, an effect that was also found in tetragonal
Fe-Co alloys [39]. The suppression is due to band broad-
ening which reduces the efficiency of spin-orbital selection
rules. Importantly, bands broaden at different rates; the con-
tributions to MCA from those bands that lie close to EF and
broaden strongly are most efficiently suppressed. The disper-
sive majority-spin bands are weakly broadened and hence the
K↑↑ term is almost unaffected by disorder; in contrast, K↓↓
is strongly reduced. We note that although band broadening
(and thereby MCA) can depend on chemical short-range or-
der, the latter is expected to be negligible in the present alloy
with chemically similar constituents.

FIG. 3. MCA in (Fe1−xCox)2B and (Co1−xNix)2B alloys calculated
within VCA (stars) compared with CPA (circles). The spin decom-
position is given for VCA.

The strongest suppression of MCA can be expected for “hot
spots” appearing when nearly degenerate bands at EF are split
by SOC. A clear example of such bands is seen near the Γ
point in Fig. 2a. The effect of disorder is further illustrated
in Fig. 4 showing the spectral function at the Γ point for two
orientations of the magnetization at x = 1, 0.9, and 0.8, all at
T = 0. At x = 1 there is no disorder, and the sharp bands
are fully split by SOC for M ‖ z. With the decrease of x, the
broadening quickly exceeds the original SOC-induced split-
ting, and the effect of SOC is strongly suppressed.

Disorder has a similar effect on the mixing of electronic
bands of opposite spin by L+S − and L−S +. Indeed, while in
Fig. 2a for T = 0 the anticrossings with the majority-spin

bands are clearly visible, in Fig. 2b for T/TC = 0.7 they are
almost completely suppressed.

(a)

(b)
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FIG. 4. Spectral functions at the Γ point at (a) x = 1, (b) x = 0.9, (c)
x = 0.8. Solid lines: M ‖ z. Dashed lines: M ‖ x. A small imaginary
part is added to energy to resolve the bands in panel (a).

We now return to the analysis of the anomalous tempera-
ture dependence of K. We expect that these anomalies come
from the effects of thermal spin fluctuations on the electronic
structure beyond a simple averaging over spin directions. As
we saw in Fig. 2, there are two such effects in (Fe1−xCox)2B:
reduction of the exchange splitting ∆, and band broadening.
The reduction of ∆ shifts the minority-spin bands downward
relative to EF , just as the band filling with increasing x does.
Band broadening has a stronger effect on the minority-spin
states where EF lies within the relatively heavy 3d bands, and
it is particularly important for nearly degenerate bands strad-
dling the Fermi level, as we saw in Fig. 4.

To understand how these effects lead to to the anomalies in
K(T ), it is convenient to examine two quantities, K↑ and K↓,

defined as Kσ =
∫ E0 (E−E0)∆Nσ(E)dE, where E0 is the Fermi

energy in the absence of SOC, and ∆Nσ is the difference, be-
tween M ‖ x and M ‖ z, in the partial density of states for spin
σ in the global reference frame. Their sum K↑ + K↓ closely
approximates K, and their analysis can help identify the con-
tributions of different bands to K, particularly in combination
with reciprocal-space resolution [16, 24].

Fig. 5a shows the temperature dependence of Kσ in Fe2B.
Since the spin-mixing contribution K↑↓ here is small (Fig. 3),
K↑ and K↓ provide similar information to K↑↑ and K↓↓ at T = 0
while retaining clear meaning at finite temperature [24]. We
see that K↓ decreases quickly with increasing T . This happens
because the downward shift and broadening of the minority-
spin bands disproportionately suppress the negative minority-
spin contribution to K. In contrast, the initial increase in K↑
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mirrors the upward slope of K↑↑(x, 0) as a function of x [16],
which occurs as the majority-spin bands shift upward rela-
tive to EF with decreasing ∆. At elevated temperatures the
majority-spin contribution becomes dominant, and K under-
goes an anomalous sign change (i. e. a spin-reorientation tran-
sition).

FIG. 5. Contributions to K in (a) Fe2B and (b) (Fe0.05Co0.95)2B from
different spins (K↑ and K↓). K+σ and K−σ in panel (b): total positive and
negative contributions to Kσ coming from different k points. (Dotted
lines show K+

↑
, K−
↑

.)

At the Co-rich end the situation is complicated by the pres-
ence of large contributions of opposite sign that come from
the mixing of minority-spin bands in different regions of the
Brillouin zone [16]. Near the Γ point there is a large pos-
itive contribution from the degenerate bands that are mixed
by Lz. There is also a large negative contribution from the
mixing of minority-spin bands of opposite parity with re-
spect to σz reflection, which is distributed over the whole
Brillouin zone. To help resolve these contributions, Fig. 5b
for (Fe0.05Co0.95)2B shows, in addition to Kσ, the total posi-
tive (K+σ) and negative (K−σ) contributions to Kσ, which were
sorted by wave vector. Fig. 6 displays k-resolved K↓ on the
ΓKM plane at T = 0 and T/TC = 0.7. The bright red ring
around the Γ point in Fig. 6 is the “hot spot” coming from the
two nearly-denegerate bands that are split by SOC (see Fig.
2a and 4).

As seen in Fig. 6, thermal spin disorder strongly suppresses
the “hot spot” observed at T = 0: it is strongly washed out
at T/TC = 0.7, while the contributions from other regions
decline almost homogeneously. This effect is similar to that

of chemical disorder (Fig. 4). As a result, K+
↓

declines faster
compared to other contributions shown in Fig. 5b, and the neg-
ative value of K grows anomalously with T .

Interestingly, while in VCA the maximum in K(x, 0) with
respect to band filling occurs near x = 0.95 (Fig. 3), in CPA
there is a cusped maximum exactly in Co2B. The latter is due
to the fact that the bands are broadened by disorder at any
x , 1, reducing the positive contribution from the “hot spots.”
This dominant effect of disorder explains why, as noted above,
the anomalous K(T ) dependence at x ≥ 0.9 is opposite to the
trend expected from increasing x, which holds at other con-
centrations. In Co2B, where the positive contribution is at its
maximum, both band broadening and decreasing ∆ contribute
to the anomalous decrease in K(T ) as the nearly degenerate
bands broaden and sink below EF .

FIG. 6. Wave vector-resolved K↓ (units of meVa3
0, where a0 is the

Bohr radius) on the ΓMX plane in (Fe0.05Co0.95)2B alloy at T = 0
(upper left) and T/TC = 0.7 (lower right).

In conclusion, we found that the anomalously increasing
temperature dependence of MCA in (Fe1−xCox)2B alloys is
due to the changes in the electronic structure induced by spin
fluctuations. This unconventional mechanism can be har-
nessed in applications where temperature-independent or in-
creasing MCA is required.
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