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It is well-known that a non-vanishing Hall conductivity requires broken time-reversal symmetry.
However, in this work, we demonstrate that Hall-like currents can occur in second-order response to
external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at
both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising
from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous
velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two
pseudo-tensor, whose form is determined by point group symmetry. We discus optimal conditions to
observe this effect and propose candidate two- and three-dimensional materials, including topological
crystalline insulators, transition metal dichalcogenides and Weyl semimetals.
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Introduction—The Hall conductivity of an electron sys-
tem whose Hamiltonian is invariant under time rever-
sal symmetry is forced to vanish. Crystals with suffi-
ciently low symmetry can have resistivity tensors which
are anisotropic, but, Onsager’s reciprocity relations [1]
force the conductivity to be a symmetric tensor in the
presence of time reversal symmetry. Hence, when the
electric field is along its principal axes the current and
the electric field are collinear, at least to the first order in
electric fields. However, this constraint is only about the
linear response and does not necessarily enforce the full
current to flow collinearly with the local electric field.

In this paper we study a special type of such non-linear
Hall-like currents. We will demonstrate that metals with-
out inversion symmetry can have a non-linear Hall-like
current arising from the Berry curvature in momentum
space. The conventional Hall conductivity can be viewed
as the zero order moment of the Berry curvature over
occupied states, namely, as an integral of the Berry cur-
vature within the metal’s Fermi surface. The effect we
discuss here is determined by a pseudo-tensorial quantity
that measures a first order moment of the Berry curva-
ture over the occupied states, and hence we call it the
Berry curvature dipole. This nonlinear Hall effect has
a quantum origin arising from the anomalous velocity of
Bloch electrons generated by the Berry curvature [2], but
it is not expected to be quantized.

In a time reversal invariant system, the Berry curva-
ture is odd in momentum space, Ωa(k) = −Ωa(−k), and
hence its integral weighed by the equilibrium Fermi dis-
tribution is forced to vanish, because Kramers pair states
at k and −k are equally occupied. However, the second
order response is determined by the integral of the Berry
curvature evaluated in the non-equilibrium distribution
of electrons computed to first order in the electric field.
Since the non-equilibrium current-carrying distribution is
not symmetric under k → −k, the integral of the Berry
curvature weighed by it can be finite, leading to a net
anomalous velocity and hence a transverse current.

Our study builds upon a seminal work by Moore and
Orenstein [3], which predicted a DC photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be re-
garded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse cur-
rent at both zero and twice the frequency in two- and
three-dimensional materials with a large class of crystal
point group symmetries. In particular, the second har-
monic generation is a distinctive signature that may fa-
cilitate the experimental detection of the quantum non-
linear Hall effect. Additionally, the effect does remain
finite in the dc limit of the applied electric field.
General theory—The electric current density is given

by the integral of the physical velocity of the electrons,
va, weighed by their occupation function, f(k):

ja = −e
∫
k

f(k) va. (1)

For simplicity we imagine a single band system but allow
it to be two- or three-dimensional:

∫
k
≡
∫
ddk/(2π)d.

The velocity contains two contributions, namely, the
group velocity of the electron wave and the anomalous
velocity arising from the Berry curvature [2] (~ = 1):

va = ∂aε(k) + εabcΩbk̇c, (2)

where ∂a = ∂/∂ka , ε and Ωb are the energy dispersion
and the Berry curvature of the electrons in question:

Ωa ≡ εabc∂bAc, Ac ≡ −i〈uk|∂c|uk〉. (3)

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields the change of momentum is:

k̇c = −eEc(t). (4)
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where Ec(t) = <{Eceiωt}, with Ec ∈ C the driving electric
field which oscillates harmonically in time but is uniform
in space. In the relaxation time approximation the Boltz-
mann equation for the distribution of electrons is [4]:

− eτEa∂af + τ∂tf = f0 − f, (5)

where f0 is the equilibrium distribution in the absence
of external fields. We are interested in computing the
response to second order in the electric field, hence we
expand the distribution up to second order: f = <{f0 +
f1 + f2}, where the term fn is understood to vanish as
En. One finds a recursive structure:

f1 = fω1 e
iωt, fω1 =

eτEa∂af0

1 + iωτ
,

f2 = f0
2 + f2ω

2 e2iωt, f0
2 =

(eτ)2E∗aEb∂abf0

2(1 + iωτ)
,

f2ω
2 =

(eτ)2EaEb∂abf0

2(1 + iωτ)(1 + 2iωτ)
.

(6)

Writing the current as ja = <{j0
a+j2ω

a e2iωt}, one obtains:

j0
a =

e2

2

∫
k

εabcΩbE∗c fω1 − e
∫
k

f0
2∂aε(k),

j2ω
a =

e2

2

∫
k

εabcΩbEcfω1 − e
∫
k

f2ω
2 ∂aε(k).

(7)

The term j0
a describes a rectified current while the term

j2ω
a describes the second harmonic. The second terms

that appear in Eq. (7) are completely semiclassical and
do not require the presence of Berry curvature. However,
within the approximation of a constant τ , one finds that
these non-linear terms are proportional to the integral
of a three-index tensor, ∂aε(k)∂bcf0(k), which is odd un-
der time reversal and hence they are forced to vanish.
Therefore the only surviving terms are those associated
with the Berry curvature. By writing j0

a = χabcEbE∗c ,
j2ω
a = χabcEbEc, one has:

χabc = εadc
e3τ

2(1 + iωτ)

∫
k

(∂bf0)Ωd. (8)

An expression essentially equivalent to that above was
obtained in Ref. [7] by Deyo, Golub, Ivchenko and Spi-
vak. The presence of the factor ∂bf0 will gurantee that
only states close to the Fermi surface will contribute to
the integral in the low temperature limit, so that this re-
sponse is a Fermi liquid property [8]. Equation (8) can
be rewritten as follows:

χabc = −εadc
e3τ

2(1 + iωτ)

∫
k

f0 (∂bΩd). (9)

This expression (9) for the nonlinear conductivity ten-
sor, χabc, is the first main result of this work. It shows

that χabc is proportional to the dipole moment of the
Berry curvature over the occupied states, defined as:

Dab =

∫
k

f0 (∂aΩb). (10)

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ � 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of
the scattering time, so that χabc directly measures the
quantum geometry of the Bloch states. In the dc limit or
for linearly polarized electric fields, the Berry curvature
dipole term always produces a current that is orthogonal
to the electric field jaEa = 0 [25].

To close this section, we wish to remark that there
exist additional second order corrections to the current
arising from modifications to Eq. (2) that are intrinsic
to the band structure, containing no powers of the scat-
tering time τ [5], however, these contributions vanish for
time reversal invariant systems. Other type of rectifica-
tions might arise in systems with an inversion asymmet-
ric scattering rate, namely when the scattering from k to
k′ has a different rate than that from −k to −k′, which
produces a kind of ratchet effect [6]. These semiclassical
Berry-phase independent contributions are distinguished
from the quantum nonlinear Hall effect discussed in this
work because they are expected to scale as τ2.
Berry curvature dipole in three dimensions—Let us ex-
plore the constraints imposed by crystal point symme-
tries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Be-
cause the Berry curvature is a pseudovector, the Berry
curvature dipole transforms as a pseudotensor. Hence,
crystal symmetries impose constraints of the form:

D = det(S)SDST . (11)

To determine which components of this tensor are non-
zero it is convenient to decompose it into symmetric and
antisymmetric parts: D± = (D ± DT )/2, which trans-
form independently under symmetry operations. The
antisymmetric part of a pseudotensor transforms as a
vector, as can be verfied from Eq. (11). The components
of this vector can be taken to be da ≡ εabcD−bc/2. There-
fore for it to be non-zero the crystal must have a polar
axis. From the 32 crystallographic point groups, 10 allow
for a polar axis, namely {Cn, Cnv} with n = 1, 2, 3, 4, 6.
The vector da will be oriented along such axis. The con-
tribution to the current from this antisymmetric part can
be written in vector notation as:

~j0 =
e3τ

2(1 + iωτ)
~E∗ × (~d× ~E),

~j2ω =
e3τ

2(1 + iωτ)
~E × (~d× ~E). (12)

Let us now determine which crystals allow for a non-
zero symmetric part D+. We require the crystal to be
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inversion asymmetric for otherwise the Berry curvature
would be identically zero due to time reversal symmetry.
Any real symmetric matrix can be diagonalized and has
a real spectrum. Let us denote its eigenvalues and eigen-
vectors by δi, ei respectively: D+ =

∑3
i=1 δieie

T
i . All

inversion asymmetric crystals without left-handed sym-
metries allow for D+ to be non-zero, but might impose
constraints on its eigenvectors to lie along the principal
symmetry axis and some of its eigenvalues to be degen-
erate, much in the same way they constrain an ordinary
tensor. Such non-centrosymmetric crystal point groups
without left-handed symmetries are {O, T,C1, Cn, Dn}
with n = 2, 3, 4, 6.

However under left-handed symmetries (detS = −1)
the transformations of D+ differ from those of an ordi-
nary tensor. Equation (11) implies that under a left-
handed symmetry operation the spectrum goes to mi-
nus itself: {δ1, δ2, δ3} → {−δ1,−δ2,−δ3}. Therefore, for
it to remain invariant as a set, it must have the form:
{δ1, δ2, δ3} = {δ, 0,−δ}. In such case the eigenvectors
would transform as Se1 = ±e3, Se3 = ±e1, Se2 = ±e2.
Therefore, any crystal with a left-handed symmetry and
an n-fold rotation axis with n ≥ 3 will force the tensor
D+ to identically vanish, since such n-fold rotation would
additionally force the eigenvectors contained within the
invariant plane to be degenerate. For a mirror symme-
try, the null eigenvector has to be parallel to the mir-
ror plane, and the eigenvectors with opposite eigenval-
ues must be at π/4 angles from such plane, so that they
are swapped under the mirror operation. Therefore, the
only non-centrosymmetric crystals with mirror symme-
tries that allow for a non-zero D+ are C1v and C2v [26].
For C1v symmetry D+ has two independent parameters
which can be taken to be the positive eigenvalue and
the orientation of the null eigen-vector within the mirror
plane. For C2v there is only one independent parameter,
which can be taken to be the positive eigenvalue, since
the null eigenvector is forced to lie along the rotation
axis. Finally, the point group S4, which contains a sin-
gle left-handed four-fold roto-reflection symmetry, allows
for a non-zero D+, whose null eigenvector is forced to
lie along the rotoreflection axis. D+ has two independet
parameters for S4, which can be taken to be the posi-
tive eigenvalue and the orientation of the corresponding
eigenvector within the roto-reflection plane.
Berry curvature dipole in two dimensions—In two-
dimensional crystals the Berry curvature behaves as a
pseudoscalar (only the out-of-plane component is non-
zero), hence the Berry curvature dipole behaves as a
pseudo-vector contained in the two-dimensional plane:

Da =

∫
k

f0 (∂aΩz). (13)

This vector has units of length. Therefore symmetry con-
straints are more severe in two-dimensions. In fact, the
largest symmetry of a 2D crystal that allows for a non-

vanishing Berry curvature dipole is a single mirror line
(i.e. a mirror plane that is orthogonal to the 2D crystal),
which would force Da to be orthogonal to it. In vector
notation the current can be written as:

~j0 =
e3τ

2(1 + iωτ)
ẑ × ~E∗( ~D · ~E),

~j2ω =
e3τ

2(1 + iωτ)
ẑ × ~E( ~D · ~E). (14)

The presence of a single mirror symmetry would force
the linear conductivity tensor to have its principal axes
aligned with the mirror line. Consequently, according to
Eq.(14), when the driving electric field is aligned with

the direction of the Berry curvature dipole vector, ~D, all
the current that flows orthogonal to it would arise solely
from the Berry curvature dipole term.
Candidate materials—Berry curvature often concentrates
in small regions in momentum space where two or more
bands cross or nearly cross. Therefore, Dirac and Weyl
materials are excellent candidates to observe the quan-
tum nonlinear Hall effect predicted in this work. More-
over, since this effect requires a Berry curvature dipole,
it is advantageous to choose low-symmetry crystals with
tilted Dirac or Weyl point (see below). We propose three
classes of candidate materials: topological crystalline
insulators, two-dimensional transition metal dichalco-
genides, and three-dimensional Weyl semimetals.

The surface of topological crystalline insulators (TCIs)
hosts massless Dirac fermions protected by mirror sym-
metries [9, 10]. In particular, the [001] surface of TCIs
SnTe, Pb1−xSnxTe and Pb1−xSnxSe, hosts four massless
Dirac fermions [11] protected by two mirror symmetries.
Pairs of Dirac cones with spin-momentum locking are lo-
cated near the X̄ points of the surface Brillouin zone,
forming a Kramers pair. At low temperatures the sur-
face undergoes a structural transition into a ferroelectric
state and one of the mirror symmetries is spontaneously
broken [12, 13], while the other remains intact. As a re-
sult two of the surface Dirac cones become massive, while
the other two remain massless [14] (see inset in Fig. 1).
Since the remaining massless Dirac points have vanishing
Berry curvature, it is sufficient to consider the contribu-
tion to the Hall current from the two Dirac points that
become massive in the distorted crystal structure. They
acquire Berry curvatures of opposite signs, because they
are mapped into one another by time reversal symmetry.
The low energy Hamiltonian for the massive Dirac point
located at momenta ±Λ away from X̄1 is given by:

HsΛ = vxkxσy − svykyσx + sαky + βσz. (15)

where s = ±1. β is the size of the gap opened by the
ferroelectric distortion. This low energy theory coincides
with that previously considered in the literature [11, 12,
14], except for the term proportional to α which produces
a tilt in the Dirac cones. This tilt is allowed by symmetry
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and has been observed in ARPES studies [15], and is
required for a nonzero Berry curvature dipole (see below).
The dispersion relation for the titled Dirac cone is:

εs(k) = sαky + sign(µ)(β2 + v2
xk

2
x + v2

yk
2
y)1/2, (16)

where µ > 0 (µ < 0) for conduction (valence) band. The
Berry curvature can be found, from Eq. (3), to be:

Ωs =
sign(µ)

2

svxvyβ

(β2 + v2
xk

2
x + v2

yk
2
y)3/2

. (17)

At zero temperature the Berry curvature dipole, com-
puted from Eq. (13), reduces to an integral over the
region εs(k) < µ. This integral can be computed by
performing an area preserving transformation: k′y =√
vy/vxky, k′x =

√
vx/vykx, and by noting that the

Fermi surface is an ellipse in the primed coordinates:
k′2x /γ

2
x + (k′y + sk0)2/γ2

y = 1. Where γx = γ/v,

γy = γ/
√
v2 − α′2, k0 = µα′/(v2 − α′2), v =

√
vxvy,

γ =
√
µ2 + (v2 − α′2)k2

0 − β2, α′ = α
√
vx/vy. The con-

dition v2 > α′2 is equivalent to v2
y > α2 and is needed

for the stability of the tilted Dirac cones. The condition
µ2 + (v2 − α′2)k2

0 > β2 states that the chemical poten-
tial is outside the gap, so that there is a finite density of
massive Dirac fermions.

The surviving mirror symmetry, that takes ky → −ky,
dictates that only the y-component of the Berry curva-
ture dipole is non-zero, and is found to be:

Dy =
3v2nβα|µ|(1 + u2)[

µ2(1 + u2)(1 + 2u2)− u2β2
]5/2 , (18)

where u = α′/
√
v2 − α′2 and n =

∫
|εs(k)|<|µ| d

2k/(2π)2 =

γxγy/4π is the absolute value of the carrier density in
each of the massive Dirac cones [27]. Each massive Dirac
cone produces an identical contribution to Dy, giving rise
to a factor of 2 already included in Eq. (18). This dipole is
orthogonal to the ferroelectric displacement direction in
our convention. The Berry curvature dipole has the same
sign for electrons and holes in this system and vanishes
when the chemical potential is in the gap of the massive
Dirac fermions. The typical scale of Dy for SnTe TCI is
~α/β ∼ 3nm, where we used a Fermi velocity of vx ≈
vy ≈ 4 × 105m/s [24], β ≈ 10meV and α = 0.1vx [28].
The behavior of Dy is depicted in Fig. 1.

Another candidate 2D materials to observe the quan-
tum non-linear Hall effect are monolayer transition-metal
dichalcogenides (TMDC). Their large spin-orbit-coupling
and lack of an inversion center produces substantial local
Berry curvatures [16, 17]. The C3v symmetry of these
crystals would force the Berry curvature dipole to van-
ish. However, uniaxial strain can reduce this symmetry
so that a single mirror operation survives, in which case
the effect is allowed. In fact, two copies of the model of
Eq. (15), each with a different gap, can describe the states

2 3 4
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5

0.06

FIG. 1: (color online) Berry curvature dipole dependence on
chemical potential µ. Upper inset: surface Brillouin zone of
TCI SnTe or (Pb,Sn)Se. The blue arrow indicates the di-
rection of the ferro-electric distortion. Lower inset: Brillouin
zone of monolayer TMDC. Dirac points are shifted away from
K and K′ by shear strain along the directions indicated by
the blue arrows. Red circles and dashed lines indicate massive
Dirac points and the surviving mirror symmetry respectively.

near charge neutrality within a k ·p model [16], and when
the shear strain is applied along high-symmetry lines (see
inset of Fig. 1). s = ± would label valleys K and K’ in
this case. The anisotropic velocity term parametrized
by α would be proportional to the strain, much in the
same way as in strained graphene [18]. For TMDCs one
obtains a scale ~α/β ∼ 0.2Å, using a Fermi velocity of
v ≈ 4.5× 105m/s, a gap β ≈ 1.5eV and α = 0.1v.

Last but not least, the Berry curvature dipole induced
non-linear Hall effect should be present in a large class of
three-dimensional non-centrosymetric crystals. Interest-
ing candidates are the recently discovered Weyl semimet-
als in the TaAs material class [19–22]. These materi-
als are non-centrosymmtric and have a polar axis, which
allows the quantum nonlinear Hall effect described by
Eq. (12). When tilted, a Weyl point generates a singular
configuration of Berry curvature, with a finite dipole mo-
ment whose magnitude can be easily estimated from band
structure calculations. In addition, other polar materials
such as BiTeI with a strong Rashba-type spin-orbit cou-
pling [23] may also have large Berry curvature dipole mo-
ments. These three-dimensional Weyl and Rashba mate-
rials provide promising platforms for the observation of
the quantum nonlinear Hall effect.
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