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We study the low energy physics of a Kondo chain where electrons from a one-dimensional band
interact with magnetic moments via an anisotropic exchange interaction. It is demonstrated that
the anisotropy gives rise to two different phases which are separated by a quantum phase transition.
In the phase with easy plane anisotropy, Z2 symmetry between sectors with different helicity of the
electrons is broken. As a result, localization effects are suppressed and the dc transport acquires
(partial) symmetry protection. This effect is similar to the protection of the edge transport in
time-reversal invariant topological insulators. The phase with easy axis anisotropy corresponds to
the Tomonaga-Luttinger liquid with a pronounced spin-charge separation. The slow charge density
wave modes have no protection against localizatioin.
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Introduction. One-dimensional systems present an
ideal platform for formation of charge density waves
(CDW) [1]; the transport in clean systems is almost ideal
[2]. However, for realistic interactions and at low tem-
peratures, even a weak disorder pins the CDW suppress-
ing the charge transport [3]. The ideal transport can be
protected by symmetries: a well-known example is the
edge transport in two-dimensional time-reversal invariant
topological insulators (TIs)[4–7]. The topologically non-
trivial state of the bulk and time-reversal symmetry leads
to a lock-in relation between the chirality and the spin
of edge modes making them helical [8]. As a result, the
electron backscattering must be accompanied by a spin-
flip; hence the edge transport becomes immune to effects
of potential disorder. Other processes which can sup-
press the ideal transport include scattering by magnetic
impurities [9] or inelastic processes due to interactions
[10–14]. All of them become ineffective at low tempera-
tures. The presence of (almost) ballistic edge transport
has been confirmed in state-of-the-art experiments [15–
18]. Hence it is accepted that the ballistic transport is
protected by time-reversal symmetry and this protection
is removed when this symmetry is broken [19, 20].

Helical boundary modes can exist in noninteracting
systems due to topological nontriviality of the bulk [21].
In this Letter, we show that helical modes may emerge
in interacting systems as a result of spontaneous sym-
metry breaking. As an illustration, we study a model of
Kondo chain [22–26] consisting of band one-dimensional
electrons interacting with local spins; the Hamiltonian of
this system is:

Ĥ = −t
∑
n

ĉ†n+1ĉn +
∑
m

Ja ĉ
†
m σ̂

aŜa(m) ĉm +H.c. (1)

ĉTn ≡ (ĉ↑(n), ĉ↓(n)) are electron operators at lattice site

n; σ̂a are Pauli matrices (a = x, y, z); Ŝa(m) are com-
ponents of the spin-s operator located on lattice site m;
t denotes the overlap integral. Sites {m} constitute some

(not necessarily regular) subset of sites {n}. We concen-
trate on the regime of sufficiently high density of spins
where the Kondo effect is suppressed and the physics is
determined mostly by the exchange (RKKY) interaction
[27]. The band is far from half filling, the spins are quan-
tum and the coupling constants are much smaller than
the bandwidth, sJa � t. We will consider the coupling
which is isotropic in the XY -plane: Jx = Jy ≡ J⊥.

Summary of the results: The low energy (LE) behavior
of model (1) includes two distinct regimes corresponding
to the easy axis (EA), Jz > J⊥, and the easy plane (EP),
Jz < J⊥, anisotropy. In the first case, all quasiparticle
(fermionic) excitations are gapped. The transport is car-
ried by gapless collective modes. The CDW couples to a
potential disorder which is able to pin it and to block the
charge transport. The SU(2) symmetric point, Jz = J⊥,
is the point of quantum phase transition into a phase
with spontaneously broken helicity. In the EP phase at
T = 0, quasiparticles with a given helicity acquire a gap
and the other helical branch remains gapless. The charge
transport is carried by the gapless helical electrons and
by the slow collective excitations (spin-fermion waves). If
the spin U(1) symmetry is respected, the long range he-
lical ordering makes single-particle backscattering of the
gapless modes impossible as in the noninteracting TIs.
This leads to suppression of localization effects: the lo-
calization radius becomes parametrically large and the
dc transport acquires a (partial) symmetry protection in
finite but long samples.

Continuum limit: The LE physics must be described
in a continuum limit. This requires to single out smooth
modes. We linearize the electron spectrum and expand
operators ĉ in smooth chiral modes:

ĉ↑↓(n) = e−ikF ξ0nR̂↑↓(x) + eikF ξ0nL̂↑↓(x), x = nξ0 ; (2)

ξ0 is the lattice constant. The Lagrangian of the band
electrons becomes

Le = Ψ†
[
Î⊗(Î∂τ−iτ̂zvF∂x)

]
Ψ, vF = 2tξ0 sin(kF ξ0); (3)
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τ is the imaginary time; the first space in the tensor
product is the spin one, the Pauli matrices τ̂a act in the
chiral space; Î = diag(1, 1); {vF , kF } are the Fermi veloc-
ity and momentum; ΨT =

(
RT, LT

)
is the 4-component

fermionic field.
Contrary to Ref.[22], where the effects of forward scat-

tering at Jz ∼ t (of the Kondo physics) were considered,
we suggest that the LE physics in the dense limit with
Ja � t (dominated by the RKKY interaction) is gov-
erned by backscattering of the fermionic modes. It is
described by

Lbs = ρs
∑

a=x,y,z

Ja
∑
m

e2ikF ξ0mR†Sa(m)σ̂aL+H.c. (4)

ρs denotes the dimensionless spin density. Lbs is expected
to lead to opening of the spectral gaps thus reducing the
energy of the electrons. The resulting physics is quite
different from that of Ref.[22].

We can eliminate the oscillatory factors in (4) by ab-
sorbing them into the spin configurations which amounts
to separation of fast and slow spin variables [28]. The
standard parametrization of the spin by azimuthal and
polar angles, S = s{sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ)},
with the integration measure D{ΩS} = sin(θ)D{θ}D{ψ}
[29] is not convenient for our purposes. Therefore, we
change to the rotating orthonormal basis e1,2,3 with
e3 = S/s and decompose the new spin vector, Fig.1:

S
→

= S
→
⊥ + S

→
‖,

S
→
‖

s
≡ e3 sinα‖;

S
→
⊥

s
≡ [e1 cosα⊥+e2 sinα⊥] cosα‖; (5)

α⊥ = 2kF ξ0m + α(x). The orthonormality can be re-
solved by choosing

e1 = {− cos(θ) cos(ψ),− cos(θ) sin(ψ), sin(θ)}, (6)

e2 = {sin(ψ),− cos(ψ), 0}. (7)

The integration measure for α, α‖ will be D{Ωα} =
cos(α‖)D{α‖}D{α}, the total measure reads D{Ω} =
D{Ωα}D{ΩS}. This does not result in overcounting the
degrees of freedom since we will find a scale separation
with two fast (massive α‖, θ) and two slow (massless α,ψ)
angles [30]. Verification of the scale separation and sta-
bility of the chosen spin configuration will confirm self-
consistency of our approach.

Inserting the new parametrization in Eq.(4) and keep-
ing only the non-oscillatory terms, we find LE Lagrangian

Leff = Le + L(sl)
bs + LWZ where

L(sl)
bs =

s̃ρs
2
R†
{
J⊥

[
eiψ sin2

(
θ

2

)
σ̂−− e−iψ cos2

(
θ

2

)
σ̂+

]
+Jz sin(θ)σ̂z

}
Le−iα +H.c.; s̃ ≡ s cos(α‖); (8)

LWZ is the topological Wess-Zumino term [31, 32]:

LWZ = isρsξ
−1
0 sin(α‖)[∂τα+ cos(θ)∂τψ]. (9)

S

SS

S
a

a

s

FIG. 1. Transformation from the frame of the vector S to
that of S

→
. Angles α‖,⊥ define the modulus of the “trans-

verse” component S
→

⊥ and its rotation around the “longitudi-

nal” component S
→

‖, respectively.

The fermionic gaps become maximal at α‖ = 0 and θ =
0, π/2, π. Thus, we expect three extrema of the action
whose stability depends on J⊥/Jz.

EA anisotropy, Jz > J⊥: The term O(Jz) domi-
nates and opens the gap in all fermionic modes. This
can be shown after removing the angles α,ψ from the
backscattering term (8) by using the Abelian bosoniza-
tion [33, 34]: we bosonize the fermions and shift bosonic
phases:

Φ̃c = Φc − α/2, Θ̃s = Θs − ψ/2 ; (10)

{Φc,Θs} are the charge and the (dual) spin phases; ∂xΦ
is coupled to a charge source field [35]: Lh = hc∂xΦc.
The shift (10) generates hc∂xα/2 in Lh. Finally, we can
return to the fermionic variables:

L(sl) ' Le + L(sl)
bs |α,ψ=0 +

∑
2Φ=α,ψ

LTL(Φ, vF ) + LWZ; (11)

LTL(Φ, v) = [(∂τΦ)2 + (v ∂xΦ)2]/πv is the Lagrangian of
the Tomonaga-Luttinger Liquid (TLL) [36].

For fixed values of {θ, α‖}, the fermionic spectrum con-
sists of the four Dirac modes with the masses:

m2
± = (s̃ρs/2)2

(√
J2
⊥ cos2 θ + J2

z sin2 θ ± J⊥
)2

. (12)

Integrating out the gapped fermions, we get the contri-
bution to the ground state energy:

EGS = − ξ0
2πvF

∑
χ=±

m2
χ ln[t/|mχ|] + o(J2

⊥, J
2
z ). (13)

If Jz > J⊥, EGS has minima at θ = π/2, α‖ = 0; small
fluctuations around the minima read:

δEea/E ≈ (J2
z − J2

⊥) cos2(θ) + (J2
z + J2

⊥) sin2(α‖), (14)
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E ≡ ln (t/J) (sρs)
2ξ0/4πvF [37]. Using Eqs.(9,14) and

integrating over the Gaussian fluctuations of the angles,
we find parameters of LTL(α) which are renormalized due
to the coupling of the spin wave to the gapped fermions
[38]. The LE Lagrangian for the EA anisotropy is [39]:

Lea =
LTL(ψ, vF )

4
+
LTL(α, vα)

Kα
+L(ea)

h ;
vα
vF

=
Kα

4
� 1.

(15)
Lea corresponds to two U(1)-symmetric TLL models with
the slow charge, α, and the fast spin, ψ, bosonic modes.

Breaking Z2 symmetry: If Jz � J⊥, then m+ ' m−,
all fermionic modes have the gap∼ Jz. Massm− progres-
sively shrinks towards the SU(2) symmetric point of the
quantum phase transition where m− = 0; one subsystem
of the helical fermions becomes gapless and our approach
looses its validity. We leave a description of the SU(2)
symmetric point for future studies and consider instead
the strong EP anisotropy Jz � J⊥.

EP anisotropy, Jz � J⊥: We put Jz → 0 and rewrite
Eq.(8) as a sum of helical contributions:

L(H1)
bs = s̃ρsJ⊥R

†
↑ cos2 (θ/2) e−i(ψ+α)L↓ +H.c. (16)

L(H2)
bs = −s̃ρsJ⊥R†↓ sin2 (θ/2) ei(ψ−α)L↑ +H.c. (17)

If θ ' π/2, both helical sectors have gaps though the
coupling constant J⊥ is effectively decreased, sin2 (θ/2) '
cos2 (θ/2) ' 1/2. If θ ' 0, π, only one helical sector
acquires the gap m = m+

∣∣
Jz,α‖,θ=0

, and J⊥ is not sup-

pressed, either sin2 (θ/2) ' 1 or cos2 (θ/2) ' 1. Since
the contribution of the gapped fermions to EGS is neg-
ative and quadratic in the gap, Eq.(13), θ = π/2 yields
maximum of the energy and two (degenerate) minima
are θ = 0, π. Thus, the Z2 symmetry between the heli-
cal subsystems is spontaneously broken. This confirms a
quantum phase transition at Jz = J⊥ [40].

We consider the configuration θ ' 0 where only L(H1)
bs

yields the femionic gap [41]. One can estimate that con-
tributions of the gapped and the gapless fermions to fluc-
tuations of EGS are of order ∼ (J2

⊥/vF ) sin2(θ/2) and
∼ (J2

⊥/vF ) sin4(θ/2), respectively. The latter is sublead-
ing, it is beyond our accuracy and must be neglected.

Thus, L(H2)
bs is irrelevant for the effective LE theory and

must be neglected too. The combination ψ − α becomes
redundant; ψ in the combination ψ + α, Eqs.(9,16), can
be absorbed in α: ψ + α → α [42]. Now, we proceed
very similar to the EA case: (a) eliminate the shifted

spin phase α from L(H1)
bs by doing the transformation

Φ̃c = Φc + α/2, Θ̃s = Θs − α/2; (18)

(b) integrate out massive helical fermions and obtain the
fermionic energy close to its minima:

δEep/E ' J2
⊥[sin2(θ/2) + sin2(α‖)/2] ; (19)

(c) integrate out small quadratic fluctuations of angles
around the stationary value; (d) bosonize gapless helical
fermions by using the Abelian phase ΦH. These steps
yield the effective Lagrangian for the EP case [38, 39]:

Lep =
LTL(ΦH, vF )

2
+
LTL(α, v′α)

K ′α
+L(ep)

h ;
v′α
vF

=
K ′α
4
� 1.

(20)
Similar to Lea, Lep corresponds to two U(1)-symmetric
TLL models with the fast, ΦH, and the slow, α, bosonic
modes. However, as we discuss below, the effective theo-
ries with- and without the helical symmetry have differ-
ent transport properties if a disorder is added.

We note that Eqs.(16,20) are similar to their coun-
terparts describing a helical edge mode in the TI with
an array of the Kondo impurities [19, 20]. In our case,
however, this helical mode has emerged as a result of
spontaneous symmetry breaking.

Density correlation functions and disorder effects: The

source terms, L(ea)
h = hc ∂xα/2; L(ep)

h = hc(∂xΦH +
∂xα/2), generate the charge density-density correlation
function: Cea ∝ 〈∂xα∂xα〉, Cep ∝

(
〈∂xΦH∂xΦH〉 +

〈∂xα∂xα〉/4
)
. Cea,ep with Lagrangians Lea,ep correspond

to the ideal metallic transport. In the EA case, it is sup-
ported by the slow CDW with the small compressibil-
ity Kα. Cep contains the contribution from the helical
quasiparticles with the bare velocity and from the slow
collective wave with the small compressibility K ′α [43].

Coupling of backscattering spinless impurities to the
fermions is described by: Vdis[g] = g(x)Ψ†(I ⊗ τ †)Ψ +
H.c.; g is the smooth 2kF -component of the scalar ran-
dom potential. We use the model of the Gaussian white
noise: 〈g1,2〉dis = 0; 〈g(x1)g∗(x2)〉dis = Dδ(x1 − x2), as-
suming that the disorder is weak, D � (m±,m)vF , and
gaps are unchanged.

After shifts Eq.(10,18), g acquires the phase factor:

g → g × eiα/2. Thus, the backscatterering impurities
are coupled to all gapless charge carriers. To figure out
whether this may lead to localization, we perform the dis-
order averaging and integrate out the massive fermions
[44]. The relevant terms appear only in D2-order and
have a different form in EA and EP phases. In the first
case, D2 couples directly to exp(iα); in the EP phase,
it couples to R+

σ L−σ exp(iα). The latter fact is related
to impossibility of single particle backscattering in the
phase with broken helicity. The power counting indi-
cates the parametric difference in the localization radius

in different phases: L
(loc)
ea /L

(loc)
ep ∼ Kα(D/vFm)4/3 � 1

with L
(loc)
ep ∼ (vF /m) (vFm/D)

2
.

Localization blocks the dc transport if a sample size is
large: L � L(loc). Thus, the ballistic transport in the
phase with broken helicity acquires the symmetry pro-

tection up to the parametrically large scale L
(loc)
ep . This

conclusion holds true as long as the U(1) symmetry in the
spin sector is respected. Breaking the U(1) spin symme-
try allows the direct backscattering of fermions and re-



4

moves protection of the ideal transport in the EP phase
(cf. localization of the helical edge modes of the TIs after
introducing an anisotropy in the XY-plane [19]).

Finite temperature effects (clean case): Previous cal-
culations are done for zero temperature. They can be
generalized for T 6= 0 provided that T � m±,m. Finite
temperature restores broken helical symmetry at Jz < J⊥
since thermal fluctuations produce domains with oppo-
site helicity. When the spin configuration interpolates
between the phases with different helicity there is an
energy increase of the order of the difference between
the energy in the unstable state (with θ ' π/2) and the
ground state energy (with θ ' 0, π). Thus, we can esti-
mate the energy of the domain wall as Ewall ∼ m2ξ0/vF ,
cf.Eq.(13). The maximal number of the domain walls is
Lm/vF . If T � Ewall, it becomes exponentially sup-
pressed: Nwall ∼ Lm/vF exp(−Ewall/T ). If Nwall > 1,
the walls appear and block the quasiparticle transport
since the electrons with a given helicity are massless
only in one domain and massive in the other (neighbor-
ing) one. Hence the electrons are reflected from domain
boundaries. An influence of the domain wall on the phase
α is reduced to a jump in the Luttinger parameter K ′α
which cannot affect the dc conductance [45]. Thus, the dc
transport in the phase with the broken helicity remains
ballistic at finite temperatures [46].

Validity: The effective LE theory, Eqs.(15,20), is valid
at energies below the smallest fermionic gap, m− and
m for the EA and the EP anisotropy, respectively. Since
m− vanishes at the SU(2) symmetric point, the approach
fails in the vicinity of the quantum critical point. Quickly
oscillating contributions ∝ e±2ikF x, which we neglected,
are generically unable to change the physics at the large
distances: If the Kondo chain is close to incommensura-
bility the quickly-oscillating exponentials can be treated
as random variables [23]. However, in the most inter-
esting case of the broken helicity, the amplitude of the
oscillating terms is suppressed in the vicinity of the clas-
sical spin configuration, θ ' 0, as ∼ (ξ0J

2
⊥/vF ) sin4(θ/2)

[see the discussion of the derivation of Eq.(20)] which
is squared after averaging over the random fluctuations,
i.e., becomes negligible.

Conclusions: We have demonstrated that the dc charge
transport in the Kondo chain model (1) with the U(1)
symmetry of spins remains ballistic in long samples,

L < L
(loc)
ep , in the presence of the potential disorder

when the anisotropy of the exchange interaction is of the
easy plane type. Due to the spontaneous breaking of
the Z2 symmetry, the charge carriers are quasiparticles
possessing a particular helicity (whose spin and chirality
are locked) and composite spin-fermion collective modes.
In the presence of the U(1) spin symmetry, all gapless
modes are protected from simple backscattering by the
mechanism similar to that in noninteracting TIs. We
emphasize that the symmetry protected transport in our
model results from interaction many-body effects instead

of the coupling to the non-interacting and topologically
non-trivial bulk. In the case of the easy axis anisotropy,
the helical symmetry is respected. The quasiparticles
are fully gapped and transport is carried solely by the
collective modes, slow CDWs, which do not posses the
symmetry protection.
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