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We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some pa-
rameters it is possible to form a stationary state in a tokamak where a saturated interchange mode
in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the
configuration by adjusting the central loop voltage through a dynamo action. This could explain the
physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred

to as “flux-pumping”.
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Typical high-performance modes of tokamak opera-
tion undergo ”"sawtooth” cycles, in which the peaking
of the central current density triggers a periodic core in-
stability which redistributes the current density. How-
ever, certain modes of operation are known, such as the
“hybrid” mode in DIII-D [1] and other tokamaks [2-7],
which do not experience this cycle of instability. Em-
pirically, it is observed that these modes maintain a
non-axisymmetric equilibrium which somehow limits the
peaking of the toroidal current density. The physical
mechanism responsible for this has not previously been
understood, but has been referred to as “flux-pumping”,
in which poloidal flux is anomalously redistributed and
the toroidal current broadened in order to maintain the
central safety factor (ratio of times a given magnetic
field line travels around the torus the long way to the
short way) greater than unity, go > 1 [1]. Here we show
that in simulations of inductively driven tokamak plas-
mas, a steady-state non-axisymmetric magnetic equilib-
rium may be obtained in which gg > 1 is maintained by a
nonlinear dynamo action driven by a stationary marginal
core interchange mode.

An inductively driven tokamak plasma is said to be
in a stationary state if the magnetic field, temperatures,
and densities (and hence pressure) are not changing in
time. If this state is achieved, it is normally reached late
in the discharge after the plasma current is constant in
time and has fully penetrated. Since the magnetic field is
not changing in time, it follows from Maxwell’s induction
equation that the electric field is the gradient of a single
valued potential plus a constant times the gradient of the
toroidal angle:
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Here, B and E are the magnetic and electric fields, ® is a
single valued potential, (R, ¢, Z) are the usual cylindrical
coordinates, and V7, is a spatial constant that represents
the voltage the long way around the torus, created by
external induction coils. In the resistive MHD description

of a plasma, the generalized Ohm’s law, E4+V x B = nJ,
combined with Eq. (1), gives the condition:

-VxB+4+nJ=-Vod+ ;%_Vgo. (2)

Here, 7 is the resistivivty, V is the fluid velocity, and
J=pg 1V x B is the plasma current density in the low
frequency (MHD) limit. Two projections of the vector
Eq. (2) are of particular interest. The toroidal projection
is given by:
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Here, the toroidal current density is represented as J, =
@ - J. If we take the inner product of Eq. (2) with the
magnetic field vector B we obtain:

%
nJ-B:-B-VcﬂiB.w. (4)

If magnetic surfaces exist everywhere, we can perform
a surface average of Eq. (4) to obtain the well-known
condition for tokamak stationary states:
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Here, () is the standard surface average operator that
annihilates B - V [8]. The plasma resistivity is a strong
function of the plasma temperature: 1 = 1y 7T~>/2 which
is constant on the magnetic surfaces. From Eq. (5) we
see that where the temperature is largest (typically in the
center of the discharge due to central heating and geomet-
rical effects) the surface averaged parallel current density
will also be largest. This large current will lead to a large
Ohmic heating term in the temperature equation which
tends to increase the central temperature even more, thus
requiring the plasma current to peak even more in order
to satisfy Eq. (5) .

The conventional explanation [9] for why this thermal
instability doesn’t continue to peak the current to very
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FIG. 1. (a) Comparison of g-profile and toroidally averaged
pressure for stationary state 3D run and 2D run with ex-
actly the same transport coefficients. (b)Poincaré plot of the
magnetic field in the final state with (2,1) and (3, 1) islands
present. Center volume has ¢ = 1.

large values is the “sawtooth” cycle. The safety factor at
the plasma center is inversely proportional to the current
density at the center: go ~ 2Br/ugJoRo , where Br is
the toroidal field strength and Ry is the major radius.
As the current continues to peak, eventually the central
safety factor falls below unity and the configuration be-
comes unstable to an internal resistive-kink mode [10]
with approximate angular dependence, cos (§ — ) where
0 is the angle the short way around the torus (in the
R, Z plane). We call this a (m,n) = (1,1) mode refer-
ring to the multipliers of the two angles. This causes a
reconnection event to occur that tends to flatten both
the current and the temperature profiles so that gy sud-
denly increases to above unity, and the process then re-
peats cyclically so that the configuration is not strictly
stationary on all timescales.

We report here on a different mechanism for prevent-
ing the current and temperature profiles from peaking
in a truly stationary state tokamak. For certain global
parameters, regardless of the initial state, the plasma
profiles will evolve into a self-organized state with the
central safety factor slightly above unity and constant
in a central volume. We illustrate such a configuration
in Figure (1). The solid curves in Fig. (la) show the
steady state pressure and safety factor profiles along the
outer major radius for a 3D simulation (red), and for an
identical 2D (axisymmetric) calculation (black) with the
same transport model and parameters. It is seen that
the toroidally averaged 3D and 2D profiles differ in the
center. Figure (1b) is a Poincaré plot of the final 3D mag-
netic configuration showing some island structure. The
central shear-free region, omitted from the Poincaré plot,
has ¢ ~ 1 and constant.

Such a large shear-free region with ¢ just above unity
is known to be linearly unstable to interchange modes
driven by any non-zero pressure gradient [11-14]. Unlike
an unstable configuration with a ¢ = 1 resonant surface in
the plasma, the unstable linear eigenfunction for a ultra-
low shear configuration with ¢ just above 1 throughout a
volume is distributed out to the region where the shear
begins (about the ¢ = 1.01 surface) and the instability
drives a strong (1,1) helical flow. The unstable linear
eigenfunction found in [13] is given in terms of the veloc-
ity stream function U by:

U = Uyr [1 - (r/rﬂ sin (6 — ¢). (6)

Here the minor radius is » = |R — Ry| and r; is the
minor radius where the shear becomes non-zero. The
steady-state condition, Eq. (4), does not explicitly con-
tain the velocity. However, the driven flow creates a (1,1)
component of the electrostatic potential ® and of the
magnetic field B that combine to create a (0,0) spatially
varying “dynamo” voltage that prevents the current den-
sity from peaking in the center and hence maintains ¢
slightly above unity and shear-free in the central region.
We note here that the role of the electrostatic potential in
maintaining near-stationary single helicity states in the
reversed field pinch has been emphasized previously [15].

The flow field also acts nonlinearly to partially flat-
ten the temperature and hence resistivity profile in the
center, thus reducing the tendency for the current to
peak [16]. However, as will be shown in Figures (3)
and (4), this effect is normally secondary to the gen-
eration of the spatially varying dynamo voltage. The
self-consistent calculations presented here illustrating the
formation of the dynamo voltage were performed with
the M3D-C1 [17] toroidal 3D MHD code, and could pos-
sibly explain non-sawtoothing discharges with ¢o ~ 1
such as hybrid modes in DIII-D [1], ASDEX-U [2], JT-
60U [3] and JET [4, 5] , and long-lived modes in NSTX [6]
and MAST [7]. Stationary non-sawtoothing behavior
has been observed in other 3D tokamak MHD simula-
tions [18-20] but an explanation of how these configu-
rations maintain themselves over resistive timescales has
not appeared.

The poloidal velocity in M3D-C1 is represented as
V = R?VU x Vo + R™2V | x, a form of a Hodge decom-
position. Here V indicates the gradient perpendicular
to the toroidal direction. In all the results presented here
the kinetic energy in the y field is less than 1% of the en-
ergy in the U field (which does not compress the strong
toroidal magnetic field) and can thus be ignored in the
analysis. Inserting this into Eq. (3) and rearranging;:
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We made use of the M3D-C1 form of the magnetic field:

B=V¢YxVo—-V,0f/0p+ FVep, (8)

—RB-VU + ¢ [FVU + V| = —nJ, +



and ' = Fy + Vif, with Fj a constant. We find that
the two terms in the bracket cancel to a high degree,
V& ~ —FVU, so that Eq. (7) becomes:

VL
an—RB-VU+27TR. (9)

This is seen to be very similar in form to Eq. (4). Both
Eq. (9) and Eq. (4) have a nonlinear term of the form B-
V& ~ —FB-VU as well as a nonlinear term in involving
the resistivity 7 and the current density.

In the illustrative simulations presented here, we solve
the single fluid 3D (or 2D) resistive MHD equations with
source terms as described in [17]. To illustrate the self-
organized voltage clamping mechanism, we present re-
sults from 5 long time simulations. We chose a toka-
mak plasma with a generic shape for the last closed flux
surface: R = Rp + acos(f + 0sinf), Z = bsin(d), with
Ry=32m,a=10 m,b=1.3 m, and § = 0.2. The
toroidal field on axis was By = F/Ry = 1 T and the
plasma current was polr = 0.8 T m so that the edge
safety factor was gegge =~ 4.5. The runs were largely
identical with central resistivity in MKS units ny =
107%(po/7a) m? , where, T4 = a\/nop/Bo, and plasma
beta: 8 = 2uo(p)/Bi = 2%. The four fully 3D simula-
tions differed in that a multiplier was applied to both the
isotropic thermal conductivity and the heating sources so
that they would balance and keep 8 = 2%. The 4 values
used were kg = C' X ng/po with C' = 18,36,72,144. The
thermal conductivity varied with the plasma temperature
as k= ko(T/Tp) /2.

The calculations in this paper all have = 2%. The
stationary behavior obtained is fundamentally different
from that in simulations at lower values of 8. In particu-
lar, we have performed a similar sequence of calculations
with 8 = 0.06 and these all exhibit periodic sawteeth os-
cillations. The presence of a 8 threshold for the existance
of stationary states is consistent with earlier computa-
tional studies [18].

A large constant parallel thermal conductivity of k| =
(10/74)m? was used in all simulations. A loop voltage
was applied at the plasma boundary with a feedback loop
to keep the total toroidal current constant in time, as is
normally done in experiments. Each simulation was also
run in a 2D (axisymmetric) mode in which all toroidal
derivatives were set to zero, for comparison. The sim-
ulations were run to long times: T = 10°74 such that
everything became time-independent. A typical station-
ary self-organized state for the 3D C' = 144 case is shown
in Fig. (1)-(2). The right side of Fig. (2) shows contours
of the M3D-C1 poloidal velocity stream function inte-
rior to the ¢ = 1.01 surface at 4 toroidal angles, and the
line plot on the left shows a comparison of the computed
stream function and the linear unstable eigenfunction as
given by Eq. (6) with Uy = 3.12x10%m/s and 71 = 0.3m.

Consider now Eq. (4). In Fig. (3) we show the dif-
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FIG. 2. Right shows contours of M3D-C1 velocity stream
function U interior to the ¢ = 1.01 surface at 4 toroidal angles.
Curves on left compare midplane values at ¢ = 180° with
linear eigenfunction found in [13] and given by Eq. (6).
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FIG. 3. (a) Effective mid-plane toroidal voltage increase in
4 different 3D stationary states over that in the equivalent
2D case. This voltage is due to dynamo action. (b) Final
safety factor profile in the 4 3D runs (solid colors) and in the
equivalent 2D runs (dashed).

ference of the mid-plane value of the toroidally averaged
voltage drop along the magnetic field that is present in
the four 3D runs from that in the corresponding 2D runs.
This fundamentally 3D dynamo voltage is obtained by
plotting the difference of the toroidally averaged first
term on the right side of Eq. (4) for each of the four
3D runs from that in its corresponding 2D run:

B 1
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ﬁvdyn = %/0 [-B-V®|,,dp - [-B-V?P],,
(10)

Here, Vg, is the axisymmetric (n = 0) voltage that is
present in the 3D runs that is not present in the 2D run
and is therefore due to the 3D dynamo effect driven by
the interchange instability. This voltage is exactly that
needed to reduce the central current density so as to keep
q in the center just above 1 and shear-free as can be seen
in the g-profiles for the four runs in Fig. (3b).

The required dynamo voltages for each of the four runs

are different because of the differing temperature and



18e-7 0.002
-
T 16e7
= s
1.4e-7 | £
= 14e o 0001
- o
Z 7 5
g 12e7 2
o
? 1.0e7 4 5
8 © 0000 §
2 80e8 | 5
s g
f,- 6.0e-8 - ‘g
s = ]
o 40e8 | il
N £
00 0,002 L — -
30 32 34 36 38 30 32 34 36 38

Major Radius Major Radius

FIG. 4. Difference in the final (a) n = 0 midplane resistivity
profiles and (b) midplane n = 1 pressure profile for each of
the 4 cases from the equivalent 2D case.
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FIG. 5. Contribution to [B-V®] _, for each of the field
components on midplane interior to ¢ = 1.01 surface.

hence resistivity flattening for the four runs as shown in
Fig. (4a). The runs with the lowest thermal conductivity
and energy source terms are most affected (flattened) by
the interchange instability and so need the least dynamo
voltage to maintain ¢ = 1 in the center.

We next examine the 3 individual terms in B - V®
that correspond to the 3 magnetic field components in
Eq. (8) for the two extreme cases to help clarify the mech-
anism that generates the dynamo voltage. As shown in
Fig. (4b),the case with the smallest x and source term,
C = 18, develops the largest (1,1) perturbation in the
pressure, op. From force balance, this perturbed pres-
sure will cause a (1, 1) perturbation in the toroidal mag-
netic field function F in Eq. (8), 0F ~ —dpuoR?/F. But
this perturbed field component does not contribute to the
toroidal average of B - V® in the central region because

dF is out of phase with 0®/0¢p.
However, the poloidal component needed to keep the

spatially varying toroidal field divergence free, i.e. the
second term in Eq. (8), —V_.9f/0¢, is in phase with
V1 ® and thus does contribute to the dynamo voltage.
The remaining term, Vi x Vi - V@ is able to adjust to
maintain the total dynamo voltage as required since the
two perturbed fields ¢ and ® have the correct phase re-
lation. To illustrate, we plot in Fig. (5) each of the 3

4

components of the axisymmetric (n = 0) component of
B - V® (minus its value in the companion 2D run) for
the two extreme cases C=18 and C=144. This clearly il-
lustrates that there is a self-organized “feedback” mecha-
nism involving the (1, 1) component of both the poloidal
flux function ¢ and the electrical potential ® maintaining
this stationary state.

Other theories for the sustainment of the hybrid
discharges have appeared involving ad hoc hyper-
resistivity [24], a rotating island driving current thru drift
effects [25], and postulating a critical condition involving
the poloidal current density [26]. However, none of these
has been demonstrated to be self-consistent by way of
a comprehensive three-dimensional time-dependent sim-
ulation as is done here.

Several experimental papers on hybrid discharges have
appeared along with analysis that confirms that 2D evo-
lution codes such as TRANSP or ASTRA would pre-
dict that the central safety factor with measured T,
profiles should fall to 0.8 or below whereas in reality
it stays at 1.0. These sawtooth-free discharges have
been correlated with a 3/2 tearing mode interacting with
ELMs [1] and alternatively with the presence of fishbone
modes [2, 27, 28]. However, a theory for how these MHD
modes maintain the current profile has previously been
lacking. In fact, it is stated in [1] “..we offer no conjecture
as to how the coupling between the ELM and m/n = 3/2
NTM can broaden the current profile density...”. Here we
are suggesting that the nonlinear (1,1) dynamo mecha-~
nism is responsible for maintaining the broad current pro-
file, and that the tearing modes and fishbones are possi-
bly a consequence of having a stationary (1, 1) mode with
an ultraflat g-profile. The experimental observation [29]
that on DIII-D a n > 1 tearing mode, usually a 3/2, is a
necessary ingredient of the hybrid discharge is not fully
explained in this paper, but it may be a bi-product of the
(1,1) mode by way of mode coupling as seen in Figure
(1).

Similar MHD dynamos as discussed here have been
shown to play a role in laminar RFP regimes, although
with higher toroidal mode number n [15, 21]. It has
also been recognized that dynamo-type effects could oc-
cur in tokamaks [see Eq. (40) of [22]], and helical core
equilibrium states in tokamaks have been found in 3D
equilibrium calculations [23] but the (1,1) nonlinear dy-
namo mechanism for sustaining these equilibrium on a
long (resistive) timescale as described in this paper has
not previously been explicitly called out. Future studies
will be concerned with better identifying which parame-
ter regimes this is expected to occur when diamagnetic
terms are present, what is the effect of sheared rotation,
what is the role of the (2,1) and possibly other islands
such as the (3,2) in supplying the dynamo voltage, and
in making closer identification to experimental results,
particularly in NSTX, DIII-D and ASDEX-U.
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