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We report the first lattice QCD calculation of the complex kaon decay amplitude A0 with physical
kinematics, using a 323×64 lattice volume and a single lattice spacing a, with 1/a = 1.3784(68) GeV.
We find Re(A0) = 4.66(1.00)(1.26)×10−7 GeV and Im(A0) = −1.90(1.23)(1.08)×10−11 GeV, where
the first error is statistical and the second systematic. The first value is in approximate agreement
with the experimental result: Re(A0) = 3.3201(18) × 10−7 GeV while the second can be used to
compute the direct CP violating ratio Re(ε′/ε) = 1.38(5.15)(4.59) × 10−4, which is 2.1σ below the
experimental value 16.6(2.3) × 10−4. The real part of A0 is CP conserving and serves as a test of
our method while the result for Re(ε′/ε) provides a new test of the standard-model theory of CP
violation, one which can be made more accurate with increasing computer capability.

PACS numbers: 12.38.Gc 11.30.Er 12.15.Hh 13.20.Eb

The violation of CP symmetry was discovered as a
sub-percent admixture of the CP-even combination of
K0 and K0 mesons in a nominally CP-odd decay eigen-
state [1]. In the standard model this mixing is caused by
a single CP-violating phase which can be introduced if
there are three generations of quarks in Nature [2]. This
CP-violating mixing is the indirect effect of virtual top
quarks. It is described by the parameter ε whose mea-
sured magnitude is 2.228(0.011)× 10−3, a value success-
fully related by the standard model to the CP violating
phase measured in the decay of bottom mesons.

Much more difficult to measure and to compute the-
oretically is the direct violation of CP in K decay, de-
scribed by the parameter ε′ and resulting from a CP vi-
olating difference between the phases of the decay am-
plitudes A0 and A2, which describe kaon decay into a
two-pion state with isospin I = 0 and 2 respectively.
This direct CP violation is three orders of magnitude
smaller than that caused by mixing, with Re(ε′/ε) =
1.66(0.23)× 10−3 [3–7]. Because of its small size this di-
rect violation of CP is especially sensitive to phenomena
beyond the standard model, phenomena that are believed
to be required to explain the current excess of matter over
anti-matter in the universe.

While standard-model, direct CP violation involves
massive W bosons and top quarks at an energy scale far
above that accessible to lattice QCD, these high-energy
interactions can be accurately captured by a low energy
effective Lagrangian with Wilson coefficients (yi and zi
below) which have been computed to next-leading-order

in QCD and electro-weak perturbation theory [8]:

HW =
GF√
2
V ∗
usVud

10
∑

i=1

[

zi(µ) + τyi(µ)
]

Qi(µ). (1)

Here GF = 1.166 × 10−5/(GeV)2, Vq′q is the Cabibbo-
Kobayashi-Maskawa matrix element connecting the
quarks q′ and q and τ = −V ∗

tsVtd/V
∗
usVud. The ten opera-

torsQi are combinations of seven independent four-quark
operators [9], renormalized at the scale µ. The task that
remains is to compute the matrix element of the ten Qi

between an initial kaon and final ππ state with I = 0 or 2.
While this has been an active area for theoretical work
over the past thirty years, no reliable analytic method
to compute these matrix elements has emerged [10–13].
However, this task is well-suited to lattice QCD.
Over the past five years, the calculation of the I = 2

decay has become accessible to lattice methods [14, 15]
and physical, continuum-limit results for A2 are available
with 10% errors [16]. However, calculating the I = 0
amplitude A0 faces substantial new difficulties: i) the
need to create an I = 0 two-pion state with energy well
above threshold and ii) the statistical noise associated
with the vacuum intermediate state. These difficulties
have been overcome by methods we will now describe.

COMPUTATIONAL METHOD

The K → ππ matrix elements of the ten operators Qi

are determined from the Euclidean Green’s functions

Ci
K,ππ(tK , tQ, tππ) =

〈

0|Jππ(tππ)Qi(tQ)JK(tK)|0
〉

(2)
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in the limit of large time separations tππ−tQ and tQ−tK
which projects onto the initial and final states of interest.
The operators JK and Jππ create the initial-state kaon
and destroy the two final-state pions. Introducing a final
state composed of two pions with non-zero relative mo-
mentum poses special challenges. Using now standard
methods [17], the desired finite-volume two-pion state
would have an energy well above that with two pions
at rest and require a multi-exponential fit to determine
the decay matrix element. For the I = 2, two-pion state
this problem can be addressed by imposing anti-periodic
boundary conditions on the down quark [14, 18].

However, for the I = 0 state we must impose isospin-
symmetric boundary conditions to avoid mixing the I =
0 and 2 states. This is possible through a major algo-
rithmic advance: the introduction of G-parity boundary
conditions [19, 20]. Since each pion is odd underG-parity,
apart from the effects of their interaction, each pion must
then carry a minimum momentum of π/L for each direc-
tion (of length L) in which G-parity is imposed. For our
lattice volume, imposingG-parity boundary conditions in
all three spatial directions results in the required I = 0,
ππ energy Eππ ≈ MK .

The G-parity transformation is described by the opera-
tor G = CeiπIy , a product of charge conjugation (C) and
a 180◦ isospin rotation about the y-axis [21]. When a lat-
tice derivative connects quark fields across such a bound-
ary the (u, d) doublet is joined to a G-parity transformed
doublet (d,−u). This doubles the computational cost
and requires substantial code modifications since explicit
u and d degrees of freedom must be introduced. In addi-
tion, the gauge fields must now obey charge-conjugation
boundary conditions which demands new, special, gauge
ensembles. Since quarks and anti-quarks are mixed at the
boundaries, new contractions must be included in which
two quark or two anti-quark fields are joined by a prop-
agator. Finally, a consistent treatment of the strange
quark s requires that we include an unphysical partner
s′ to form an iso-doublet that obeys G-parity boundary
conditions [22]. When generating the 2 + 1 flavor gauge
ensemble we must then take the square root of the deter-
minant of the s− s′ Dirac operator so that only a single
strange quark flavor is included.
The second critical difficulty is that the I = 0, two-pion

state has the same quantum numbers as the vacuum, the
state which thus dominates the large tππ−tQ limit needed
to remove excited states. We must subtract this vac-
uum contribution and deal with the exponentially falling
signal-to-noise ratio that results, a subtraction carried
out successfully in threshold calculations, with final-state
pions approximately at rest. [23, 24] [25].

We reduce the noise from this vacuum subtraction us-
ing two techniques. First we use a split-pion operator [24]
to destroy the two-pion state. Specifically Jππ(tππ) is
the product of two quark-anti-quark pairs, one pair at
the time tππ and the second at tππ + 4. By separating

the pion operators we suppress the vacuum coupling that
results when coincident pion operators immediately cre-
ate and destroy a pion, reducing the vacuum noise 2×.
Second we use all-to-all propagators [26, 27] to construct
each pion interpolating operator from a quark-anti-quark
pair, fixed to Coulomb gauge, with a relative coordinate,
hydrogen ground-state wave function of radius 2a and
center-of-mass coordinate distributed over a time plane
at tππ or tππ + 4. This choice increases the Jππ coupling
to the two-pion state relative to the vacuum, giving a
further 2× noise reduction [28].

We use a 323 × 64 volume, the Iwasaki+DSDR gauge
action [29] and Möbius [30], domain wall fermions
(DWF) [31] with an extent of 12 in the fifth dimension.
By using β = 1.75 and Möbius parameters b+ c = 32/12
and b− c = 1 we ensure that this ensemble is equivalent
to our earlier DSDR ensemble [32], except that the latter
has periodic boundary conditions and mπ = 170 MeV.
Input quark masses of ml(= mu = md) = 0.0001
and ms = 0.045 are used. (If a dimensioned quan-
tity is given without units, lattice units are implied.)
The inverse lattice spacing, residual quark mass, pion
mass, and single-pion energy are 1/a = 1.3784(68) GeV,
mres = 0.001842(7), Mπ = 143.1(2.0) MeV and Eπ =
274.6(1.4) MeV.

We analyzed 216 guage configurations separated by 4
units of molecular dynamics time, starting at 300 time
units for equilibration. Seventy-five distinct diagrams
were computed, of four types as shown in Fig. 1. We com-
pensated for this small number of configurations by per-
forming 64 measurements on each configuration, intro-
ducing the kaon and pion sources on each of the 64 time
planes. (The statistically more accurate, type 1 and 2 di-
agrams were computed only on every eighth time plane.)
The many propagator inversions needed on each config-
uration were accelerated using low-mode deflation with
900 Lanczos eigenvectors [33] with the BAGEL fermion
matrix package [34]. A complete set of measurements re-
quired 20 hours on an IBM Blue Gene/Q 1

2 -rack [35], in
balance with the 24 hours needed to generate four time
units of gauge field evolution on this same machine.

FIG. 1. Examples of the four types of diagram contributing to
the ∆I = 1/2, K → ππ decay. Lines labeled ℓ or s represent
light or strange quarks. Unlabeled lines are light quarks.
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We must deal with two sorts of finite volume effects.
The first are errors falling exponentially with increasing
lattice size which result from “squeezing” the physical
states. Such errors are at the percent level if Lmπ ≥ 4.
In our case, Lmπ = 3.2 and errors ≈ 7% may result [15].
The second are effects falling as a power of L, similar
to the discretization of the energy that we are exploit-
ing. Here we apply the Lellouch-Lüscher correction [17]
to remove the leading 1/L3 effect. This requires that our
final ππ state is an “s-wave” combination of the eight
single-pion momenta (±1,±1,±1)π/L. Ensuring this s-
wave symmetry requires pion operators constructed to
minimize the quark-level, cubic-symmetry violations in-
troduced by G-parity boundary conditions.
Essential to this calculation is the ability to define the

seven independent, four-quark, lattice operators which
correspond to those in the continuum Eq. (1). This is
accomplished by using DWF whose accurate chiral sym-
metry ensures that the operator mixing is the same as
that in the continuum. Specifically we apply the Rome-
Southampton method [36] at µ = 1.53 GeV, to introduce
RI/SMOM normalization [23] and then use continuum
QCD perturbation theory [37] to relate this to the MS
normalization used for the Wilson coefficients [8].

ANALYSIS AND RESULTS

The K → ππ matrix elements of the operators Qi can
be determined from the time dependence of the three-
point functions defined in Eq. (2):

〈Jππ(tππ)Qi(tQ)JK(tK)〉 = e−Eππ(tππ−tQ)e−MK(tQ−tK)

×〈0|Jππ(0)|ππ〉〈ππ|Qi(0)|K〉〈K|JK(0)|0〉+ · · · . (3)

The ellipses represent contributions from the vacuum fi-
nal state or excited kaon or ππ states. For the “split-
pion” operator Jππ(tππ), tππ is the time closest to tQ.
The normalization factors 〈0|Jππ(0)|ππ〉 and

〈K|JK(0)|0〉 in Eq. (3), and the energies MK and
Eππ can be determined from the two-point functions:

〈0|J†
X(ta)JX(tb)|0〉 = e−EX(ta−tb)

∣

∣〈0|JX(0)|X〉
∣

∣

2
(4)

where X = ππ or K. For X = ππ the contribution
of the vacuum intermediate state to the left-hand side
must be subtracted. Figure 2 shows the resulting effective
energy of the kaon and two-pion states in lattice units.
The kaon mass is obtained from an uncorrelated fit using
6 ≤ t ≤ 32. For the more challenging I = 0, ππ energy,
we perform a correlated, single-state fit over the interval
6 ≤ t ≤ 25, obtaining χ2/dof = 1.56(68). A correlated,
two-state fit using 3 ≤ t ≤ 25 gives consistent results.
We find MK = 490.6(2.4) MeV and Eππ = 498(11) MeV.
Using the Lüscher quantization condition [38, 39] we find
an I = 0, ππ phase shift δ0 = 23.8(4.9)(1.2)◦, smaller
than phenomenological expectations [40, 41]. Here the

first error is statistical and the second an estimate of the
O(a2) error. For I = 2 we find EI=2

ππ = 573.0(2.9) MeV
and will use δ2 = −11.6(2.5)(1.2)◦, a corrected version of
our continuum result [16].
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FIG. 2. Effective energies of the kaon (squares) and two-
pion (circles) states deduced from the corresponding two-
point functions by equating the results from two time sep-
arations to the function A coshEeff(T/2− t) where T = 64 is
the temporal lattice size, plotted as a function of the smallest
of those two separations. (We replace T by T − 8 for the ππ
case.) These are overlaid by the errorbands corresponding to
the fitted values of Eππ (light blue) and mK (pink).

Important for type 3 and 4 diagrams is the quadrat-
ically divergent quark loop. This contribution is the
same as that from the operator dγ5s with a coefficient
∝ (ms −ml)/a

2. Since dγ5s is the divergence of an ax-
ial current, its matrix element between states with equal
four-momentum will vanish and it will not contribute to
a physical process such as K → ππ. However, for ma-
trix elements between states with unequal energies, this
term may be 20× larger than the other physical terms.
Even for an energy conserving amplitude, it will con-
tribute both noise and increased systematic error from
enhanced, energy non-conserving, excited-state contam-
ination. We determine the size of such an unphysical
piece from the ratio ri = 〈0|Qi(tQ)|K〉/〈0|dγ5s(tQ)|K〉
and then subtract, time slice by time slice, the operator
ridγ

5s(tQ) [42], dramatically reducing the noise for Q5,
Q6, Q7 and Q8.

The largest contributions to the real and imaginary
parts of A0 come from Q2 and Q6, respectively. Fig-
ure 3 shows the three-point functions for these operators
as a function of the time separation between Qi and Jππ.
Because the vacuum state may appear between these op-
erators, the relative size of the statistical noise in the
vacuum-subtracted matrix element increases rapidly as
tππ − tQ increases. In Fig. 3 we have combined the data
(by taking an error-weighted average) from each three-
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point function for fixed tππ − tQ and tQ − tK ≥ 6.
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FIG. 3. The Q2 and Q6 three-point functions, plotted in
lattice units as functions of tππ−tQ, with the time dependence
in Eq. (3) removed. The horizontal lines show the central
value and errors from the fit described below.

The matrix elements {〈ππ|Qi|K〉}1≤i≤10 are obtained
by fitting the corresponding three-point functions to the
time dependence in Eq. (3), using tQ − tK ≥ 6 and
tππ − tQ ≥ 4. We fit 25 time separations with tππ − tK =
10, 12, 14, 16 and 18. Figure. 3 is consistent with the ex-
istence of plateaus for tππ− tQ ≥ 4 and consistent results
are obtained when including the tππ − tQ = 3 data, sug-
gesting sub-statistical, excited-state contamination. We
estimate the systematic error from excited state contam-
ination as the 5% difference between the ππ amplitude
from a correlated, single-state fit to the ππ correlator
with t ≥ 4 (our matrix element fitting method) and the
lowest energy amplitude found in a correlated, two-state
fit to the same data with t ≥ 3, although the difference
is again within the now smaller statistical errors. (If we
omit the accurate, tππ−tQ = 4 data, our statistical errors
increase by 40%.) Combining the data into bins of size 1,
2, 4 and 8 configurations, shows no bin-size dependence
of the statistical errors, suggesting that autocorrelations
can be neglected. We therefore use a bin size of one.

Finally these lattice matrix elements are combined
with the renormalization factors, Wilson coefficients and
Lellouch-Lüscher finite volume correction to obtain their
contributions to A0 as listed in Tab. I. Adding these in-

i Re(A0)(GeV) Im(A0)(GeV)

1 1.02(0.20)(0.07) × 10−7 0
2 3.63(0.91)(0.28) × 10−7 0
3 −1.19(1.58)(1.12) × 10−10 1.54(2.04)(1.45) × 10−12

4 −1.86(0.63)(0.33) × 10−9 1.82(0.62)(0.32) × 10−11

5 −8.72(2.17)(1.80) × 10−10 1.57(0.39)(0.32) × 10−12

6 3.33(0.85)(0.22) × 10−9
−3.57(0.91)(0.24) × 10−11

7 2.40(0.41)(0.00) × 10−11 8.55(1.45)(0.00) × 10−14

8 −1.33(0.04)(0.00) × 10−10
−1.71(0.05)(0.00) × 10−12

9 −7.12(1.90)(0.46) × 10−12
−2.43(0.65)(0.16) × 10−12

10 7.57(2.72)(0.71) × 10−12
−4.74(1.70)(0.44) × 10−13

Tot 4.66(0.96)(0.27) × 10−7
−1.90(1.19)(0.32) × 10−11

TABLE I. Contributions to A0 from the ten continuum, MS
operators Qi(µ), for µ = 1.53 GeV. Two statistical errors
are shown: one from the lattice matrix element (left) and one
from the lattice to MS conversion (right). See the Supplemen-
tal Material at [URL to be inserted] for tables of the separate
matrix elements in the lattice, RI/SMOM and MS schemes
as well as the renormalization matrices which relate them.

dividual contributions together gives our final result:

Re(A0) = 4.66(1.00)(1.26)× 10−7 GeV (5)

Im(A0) = −1.90(1.23)(1.08)× 10−11 GeV (6)

where the first error is statistical and the second (dis-
cussed below) is systematic. We can then compute the
experimental measure of direct CP violation:

Re

(

ε′

ε

)

= Re

{

iωei(δ2−δ0)

√
2ε

[

ImA2

ReA2
− ImA0

ReA0

]}

(7)

= 1.38(5.15)(4.59)× 10−4, (8)

obtained using the Im(A0) and δ0 values given above and
our earlier results for Im(A2) and δ2 [16]. We use the
experimental values for Re(A0), Re(A2) and their ratio ω
(since these are accurately determined from the measured
K → ππ decay rates) and the experimental value for ε.
We now briefly describe the systematic error estimates

given in Tab. II; more complete explanations will appear
in a later paper. We estimate the finite lattice spacing
error by averaging the differences between the three, in-
dividual ∆I = 3/2, K → ππ matrix elements obtained
using the present gauge action [15] and our recent contin-
uum limit results [16]. The errors arising from the Wilson
coefficients are estimated as the difference of our result
computed using the leading-order (LO) and next-leading-
order (NLO) formulae for Re(A0) [8]. A similar uncer-
tainty arises when we relate our lattice operators to the
MS operators in the continuum expression for HW . This
procedure is compromised by our use of NLO perturba-
tion theory at µ = 1.53 GeV to relate the RI- and MS-
normalized operators and by our omission of dimension-5
and 6 quark-bilinear operators (whose contribution we
expect to be small) from the non-perturbative opera-
tor matching. These operator normalization errors are
estimated, as in Ref. [16], by comparing two different
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RI/SMOM schemes. Parametric uncertainties are found
by propagating the standard-model input parameter er-
rors. Comparing two ansätze for the Eππ dependence of
δ0 suggests a 11% uncertainty in the Lellouch-Lüscher
finite-volume correction. Finally systematic errors are
introduced by our mildly unphysical kinematics which
are estimated from a companion calculation using a 10%
larger value of the strange quark mass.

Description Error Description Error

Finite lattice spacing 12% Finite volume 7%
Wilson coefficients 12% Excited states ≤ 5%
Parametric errors 5% Operator renormalization 15%
Unphysical kinematics ≤ 3% Lellouch-Lüscher factor 11%
Total (added in quadrature) 27%

TABLE II. Representative, fractional systematic errors for the
individual operator contributions to Re(A0) and Im(A0).

CONCLUSION

We have presented the first calculation of the direct CP
violation parameter ε′ with controlled errors. While the
2.1σ difference between our value for Re(ε′/ε) and exper-
iment gives a strong motivation to refine the present cal-
culation, we believe that the absolute size of our statisti-
cal and systematic errors demonstrates that this is now a
quantity accessible to lattice QCD. Also for the first time,
we have computed the real part of the decay amplitude
A0. The result agrees with the experimental value and
provides a test of our methods. This result for Re(A0) is
consistent with our earlier explanation of the ∆I = 1/2
rule [43] in which the large ratio of Re(A0)/Re(A2) re-
sulted from a significant cancellation between the two
dominant terms contributing to Re(A2), a cancellation
which does not occur for Re(A0). We emphasize that
this calculation can be substantially improved by adding
more statistics and by studying larger volumes and addi-
tional lattice spacings to better control the large system-
atic errors. Non-perturbative, step-scaling methods can
relate the lattice operators being used to those defined at
much smaller lattice spacing where the perturbative Wil-
son coefficients can be more accurately determined. We
expect that a 10% error relative to the measured value
of Re(ε′/ε) can be achieved within 5 years, motivating
continued improvement in the experimental result. Sub-
stantially more accurate results will become possible with
further increases in computer power and the inclusion of
electromagnetism.
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