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We introduce state-independent, non-perturbative Hamiltonian quantum speed limits for population leakage

and fidelity loss, for a gapped open system interacting with a reservoir. These results hold in the presence of

initial correlations between the system and the reservoir, under the sole assumption that their interaction and

its commutator with the reservoir Hamiltonian are norm-bounded. The reservoir need not be thermal and can

be time-dependent. We study the significance of energy mismatch between the system and the local degrees of

freedom of the reservoir which directly interact with the system. We demonstrate that, in general, by increasing

the system gap we may reduce this energy mismatch, and consequently drive the system and the reservoir into

resonance, which can accelerate fidelity loss, irrespective of the thermal properties or state of the reservoir. This

implies that quantum error suppression strategies based on increasing the gap are not uniformly beneficial. Our

speed limits also yield an elementary lower bound on the relaxation time of spin systems.

Quantum speed limits (QSLs) answer the fundamental

question of how fast a quantum system can evolve, and have

numerous applications, e.g., in quantum computation, control,

and metrology. Traditionally, they characterize the minimum

amount of time required for a quantum state of a closed quan-

tum system to evolve to an orthogonal state. Mandelstam &

Tamm (MT) [1] first showed that this time is lower bounded

by the inverse of the standard deviation of the Hamiltonian.

Margolus & Levitin (ML) [2] gave a different bound involv-

ing the inverse of the mean of the Hamiltonian, and the two

bounds were subsequently unified [3]. These results led to

numerous applications and extensions which go beyond the

traditional QSLs, and consider, e.g., the minimum time for

optimal control, or for implementing a unitary gate in quan-

tum computation [4–20].

In this Letter we are concerned with QSLs for open quan-

tum systems [21], a question that has attracted significant re-

cent attention [22–25]. While earlier work focused on gener-

alizing the MT or ML-bounds to the open system setting, here

we present state-independent, non-perturbative Hamiltonian

QSL bounds for population leakage and fidelity loss, for a

gapped open system interacting with a reservoir. The assump-

tions behind the results we present here are also different and

independent from those behind previous such bounds. First,

we make the (often natural) assumption that the system’s ini-

tial state is restricted to an energy sector which is separated

from the rest of the spectrum by a nonzero gap ∆E, e.g., the

ground subspace in various quantum information processing

applications. Second, our bounds are independent of the state

of the system or reservoir, and in particular, remain valid in

the presence of initial correlations between the system and

the reservoir. Third, our bounds are obtained purely at the

Hamiltonian level. Thus, unlike most other open system QSL

bounds [22–25], we do not assume that the system’s evolu-

tion is governed by a master equation or a completely positive

channel.

Our key result is given in Eqs. (6) and (7) below, and com-

prises fundamental QSL bounds on decoherence and leakage

times, expressed in terms of ∆E and the bounded norms of the

interaction Hamiltonian and its commutator with the reservoir

Hamiltonian, without assuming that the reservoir Hamiltonian

is norm-bounded. Note that applying the traditional closed

system QSL bounds to the system and reservoir together in

general yields bounds which are rather loose and independent

of the gap ∆E [26].

Given the very general assumptions behind our QSLs, they

have a wide range of applicability similar to the previously

known QSLs, including relaxation in many-body spin systems

and limitations of control via a remote controller. The primary

application on which we focus is quantum error suppression,

where the goal is to slow down the loss of fidelity relative

to some desired system state, e.g., in the context of quantum

information processing tasks [27, 28]. A common strategy

to achieve fidelity enhancements is to use or generate energy

gaps (e.g., [29–35]). Therefore, after deriving our QSLs we

study the dependence of the speed of decoherence and leakage

on ∆E. This enables us to find a general lower bound on the

timescale for leakage. As expected, we find that in the ∆E →
∞ limit the probability of leakage at any finite time goes to

zero, and moreover, that if the error detection condition [36]

holds then in this limit the state retains its fidelity and remains

unaffected by the environment. However, we demonstrate that

such protection is not guaranteed when ∆E is finite. Namely,

by analyzing a spin system model, we show that increasing

the gap can in fact accelerate fidelity loss and decoherence,

essentially because of a resonance between the system and

the reservoir. This means that protection via increasing energy

gaps can be counterproductive [37].

Technical results.—Consider a system S coupled to a reser-

voir R with the total Hamiltonian Htot(t) = HS +HR(t)+HI

where [HS, HR(t)] = 0 and the interaction satisfies ‖HI‖ <
∞ (we use the operator norm ‖ · ‖, i.e., the largest singu-

lar value; we also use ~ = 1 units throughout). An impor-

tant class of examples are spin-bath models [38]. We denote

the time-dependent joint system-reservoir state evolving un-

der Htot(t) by ρSR(t) and the reduced state of the system at
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time t by ρ(t) = TrR[ρSR(t)]. Let C be the subspace of the

system Hilbert space spanned by the eigenstates of HS whose

energies lie in the interval I ⊆ R, which includes at least

one eigenvalue of HS. Let PC be the projector onto C, and

QC ≡ I − PC be the projector onto the orthogonal subspace

C⊥. Thus [PC , HS] = 0. Let δE denote the energy spread

in C, i.e., the difference between the minimum and maximum

eigenvalues of HS in I. Let ∆E denote the gap between the

energy levels of HS inside and outside C (i.e., if λ1 and λ2 are

two distinct eigenvalues of HS such that λ1 ∈ I but λ2 /∈ I,

then |λ1 − λ2| ≥ ∆E). Initially we assume ∆E > 2‖HI‖,

which guarantees that there is a separation between the sys-

tem energies inside I and the rest of the spectrum, even in the

presence of the interaction. This simplification is relevant be-

cause we are mostly interested in the large ∆E limit. Later,

when we arrive at Eq. (11), we present the general form of

the result which relaxes this condition, and results in tighter

bounds for small t, even when ∆E < 2‖HI‖. Before we in-

troduce our bounds, we define an important inverse timescale

for open system dynamics, that will make repeated appear-

ances:

Ω(t) ≡ 2‖[HI, HR(t)]‖
∆E − 2‖HI‖

. (1)

We proceed to present and interpret our main results. All our

results are given rigorous proofs in the Supplementary Mate-

rial (SM) [39]. Unless stated otherwise, throughout we as-

sume that the system state is initialized in C, i.e., ρ(0) =
PCρ(0)PC .

Leakage.—Leakage is the process whereby the system state

develops support in C⊥, which we quantify in terms of the

leakage probability pleak(t) ≡ Tr[ρ(t)QC ]. Our first general

result is an upper bound on pleak(t), proved in the SM [39]:

pleak(t) ≤
(

4‖HI‖
∆E

+

∫ t

0

ds Ω(s)

)2
∆E�∞
−−−−−→ 0 . (2)

To explain this bound, note that the terms ‖HI‖/∆E and
∫ t

0
ds Ω(s) correspond to two different sources of leakage:

‖HI‖/∆E determines how much C is rotated by the interac-

tion HI. The rotated eigenstates of the perturbed Hamiltonian

can cause leakage relative to the eigenstates of the original

Hamiltonian. Of course, this also happens in the closed sys-

tems, and this is why this term does not vanish for HR(t) = 0,

where the total system Hamiltonian becomes HS +HI. Since

‖HI‖/∆E is time-independent, it remains small and insignifi-

cant in the limit where the gap is large. The term
∫ t

0
ds Ω(s) is

more interesting. In particular, in the case of time-independent

HR(t) = HR, where the total energy of the system and reser-

voir is a conserved quantity, ‖[HR, HI]‖ can be interpreted as

the maximum rate of change of energy of reservoir. Then,

in the special case where C is the bottom (top) energy sec-

tor, Ω−1 can be interpreted as the minimum time the reservoir

needs to transfer (absorb) the required energy to move the sys-

tem from C to C⊥ (see the SM [39]).

Fidelity.—We compare the instantaneous “actual” state

ρ(t) and the “ideal” system state ρid(t) = e−itHSρ(0)eitHS

using their Uhlmann fidelity [40, 41] F [ρ(t), ρid(t)] ≡
‖
√

ρ(t)
√

ρid(t)‖1 (‖ · ‖1 is the trace norm) and their Bu-

res angle Θ(t) ≡ arccos (F [ρ(t), ρid(t)]), a generalization to

mixed states of the angle between two pure states [42]. Let

P0 ≡ PC ⊗ IR. We define the induced splitting by HI on C as

IS(P0HIP0) ≡ minKR∈Herm(HR)‖P0HIP0 − PC ⊗KR‖ , (3)

where the minimization is over the Hermitian operators act-

ing on the reservoir Hilbert space HR. This quantity can be

interpreted as the strength of the effective interaction between

the code subspace and the reservoir in the lowest order of per-

turbation theory. It exists because the reservoir can couple to

different states in the subspace C in different ways and this

generally leads to decoherence, or, in special cases, to a mod-

ification of the system Hamiltonian, a potentially beneficial

effect [43] (see the SM [39]). This term can be nonzero only

when C is at least two-dimensional. We can now state our

second general result, an infidelity upper-bound:

sin
Θ(t)

2
=

1√
2

√

1− F [ρ(t), ρid(t)] ≤
2‖HI‖
∆E

(4)

+

∫ t

0

ds Ω(s) + t

[

IS(P0HIP0)

2
+

2‖HI‖(δE + ‖HI‖)
∆E

]

.

Related bounds have been obtained in Ref. [34]. While

bound (4) holds for ∆E > 2‖HI‖ and states initialized in

C, our third general result is a simple universal QSL bound

which does not require either one of these assumptions:

sin
Θ(t)

2
≤ t(λmax − λmin)

4
≤ t‖HI‖

2
, (5)

where λmax and λmin are the maximum and minimum eigen-

values of HI, respectively. This bound formalizes the stan-

dard intuition that the minimum relaxation time of an inter-

acting system is determined by the inverse of the couplings.

However, as we will show in an explicit example, our QSL

bounds (2) and (4) can lead to much stronger bounds on the

relaxation time.

Quantum speed limits.—The bounds we have presented di-

rectly lead to QSLs on open-system quantum evolution, as we

show next. For simplicity, in the following we assume that

HR(t) = HR.

Let τCleak denote the smallest time at which the probability

of leakage from C exceeds a constant threshold p0 ∈ (0, 1).
Then, it follows from bound (2) that in the large-gap limit

(i.e., ‖HI‖/∆E ≪ p
1/2
0 ) this timescale is lower-bounded by

∆E
2‖[HI,HR]‖

p
1/2
0 . We can find a different lower bound on τCleak

using bound (5) together with the fact that F [ρ(t), ρid(t)] ≤
√

1− pleak(t) (see the SM [39]). Let τmin be the small-

est time at which F [ρ(t), ρid(t)] drops below the threshold

(1 − p0)
1/2 for an arbitrary initial state. This threshold con-

vention guarantees τCleak ≥ τmin. Then bound (5) implies
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τmin ≥ c(p0)‖HI‖−1, where c(p0) = [2(1 − (1 − p0)
1/2]1/2,

and hence

τCleak ≥ max

{

c(p0)‖HI‖−1 , p
1/2
0

∆E

2‖[HI, HR]‖

}

. (6)

Similarly, we can define τCfid to be the smallest time at which

F [ρ(t), ρid(t)] drops below the threshold (1− p0)
1/2. For this

choice of threshold we always have τCfid ≤ τCleak. If we further

assume the same large-gap limit and also that IS(P0HIP0) =
0 and δE = 0, which is a relevant assumption in the context

of error suppression, we find using bound (4) that

τCfid ≥ c(p0) max

{

‖HI‖−1 ,
∆E

4(‖[HI, HR]‖+ ‖HI‖2)

}

.

(7)

Equations (6) and (7) constitute our key new QSL bounds. It

follows from the definitions of the various timescales we have

introduced, together with our result in the bound (5), that

τCleak ≥ τCfid≥τmin ≥ c(p0)‖HI‖−1 . (8)

The above bounds on τCleak, τCfid and τmin are all first-order in

‖HI‖−1. On the other hand, any master equation derived

under the Born-Markov approximation (BMA) is necessarily

second-order in the coupling strength [21]. Therefore, these

QSL time scales, or more generally any open-system behav-

ior which occurs on a timescale of order ‖HI‖−1, such as the

resonance phenomenon discussed below, cannot be described

under the BMA.

Quantum error suppression.—One of the main applications

of these bounds is in the context of quantum error suppres-

sion. C is then the code subspace and one is usually interested

in the case where it is a degenerate eigensubspace of HS (i.e.,

δE = 0). In this case ρid(t) = ρ(0), whence F [ρ(t), ρid(t)]
is simply the fidelity between the initial state and the state at

time t. The fidelity can degrade even if the gap is large com-

pared to the interaction, i.e., if ‖HI‖/∆E ≤ ǫ ≪ 1. In this

limit bound (4) implies that the rate of fidelity loss is upper

bounded by Ω′(t) = 2
√
2Ω(t)+

√
2 IS(P0HIP0)+O(ǫ)‖HI‖.

This result has a simple interpretation: fidelity loss can hap-

pen either because of leakage, whose speed is bounded by

Ω(t), or because of the effect of the reservoir on C, whose

strength is given by IS(P0HIP0). In the limit ∆E → ∞ the

rate of fidelity loss is determined just by the induced splitting

IS(P0HIP0), and if this quantity vanishes then for any finite

time t, F [ρ(t), ρid(t)] → 1.

Therefore, the special case where IS(P0HIP0) = 0 is par-

ticularly important for error suppression. To illuminate it,

consider the decomposition of the interaction term as HI =
∑

α Sα ⊗Bα, where {Sα} and {Bα} are, respectively, inde-

pendent system and reservoir operators. Then, using Eq. (3),

we find that IS(P0HIP0) = 0 iff PCS
αPC ∝ PC for all Sα.

This is also known as the quantum error detection (QED) con-

dition [28, 36]. Thus the induced splitting quantifies the devi-

ation from the QED conditions. IS(P0HIP0) = 0 can be the

result of symmetries of the interaction as in a decoherence-

free subspace [44, 45], or it can be engineered using QED

codes (e.g., [32]). Using bound (4) we can go beyond this

special case and study the effectiveness of a particular error

suppressing scheme in the case where the perfect QED condi-

tion does not hold (see also Ref. [46]).

Role of the reservoir and system parameters.—One of the

interesting aspects of bounds (2)-(4) is that they are indepen-

dent of the reservoir state, and the reservoir Hamiltonian en-

ters only via ‖[HI, HR(t)]‖. This means that even if the reser-

voir is infinitely large and ‖HR(t)‖ or ‖dHR(t)/dt‖ are un-

bounded, as long as ‖[HI, HR]‖ remains small and bounded,

the leakage can be a slow process, depending on the ratio

∆E/‖[HI, HR]‖. This happens, in particular, when the inter-

action with the reservoir is quasilocal, i.e., the system degrees

of freedom (DOFs) interact only weakly with the distant reser-

voir DOFs. To be concrete, consider the decompositionsHI =
∑

i∈R H
(i)
I and HR =

∑

i∈R H
(i)
R , where each term H

(i)
I and

H
(i)
R acts non-trivially only on a local DOF i in the reser-

voir. Then ‖[HI, HR(t)]‖ ≤ 2
∑

i∈R ‖H(i)
I ‖ ‖H(i)

R (t)‖. In

many physical scenarios this sum, and hence ‖[HI, HR(t)]‖,

is bounded and small while ‖HR(t)‖ is unbounded and con-

tains long-range interactions. E.g., the reservoir may con-

tain bosonic DOFs, for which ‖HR(t)‖ is infinite. But, as

long as these bosonic DOFs do not directly interact with ei-

ther the system or the DOFs which directly couple to the sys-

tem (i.e., those with H
(i)
I 6= 0), ‖[HI, HR(t)]‖ can be small.

This remains true even if information propagates arbitrarily

fast through the reservoir and the Lieb-Robinson velocity [47]

is unbounded.

On the other hand, if ‖[HI, HR(t)]‖ is large and comparable

to ∆E‖HI‖, then our QSL bounds suggest that the timescales

for fidelity loss and leakage error can be as small as ‖HI‖−1,

even in the large ∆E limit. As we explicitly show below, the

bounds are attainable when ‖[HI, HR(t)]‖ ≃ ∆E‖HI‖.

It is also interesting to note that bounds (2)-(4) are inde-

pendent of the state of the reservoir. This implies that even in

the limit of infinitely high temperature T , leakage can still be

a very slow process, depending on the ratio ∆E/‖[HI, HR]‖.

This is a consequence of the assumption that both ‖HI‖ and

‖[HI, HR]‖ are bounded, and it does not hold, e.g., in the case

of bosonic reservoirs with the standard spin-boson coupling to

the system. On the other hand, even at T = 0 all information

in the system state can be erased by the reservoir in a time

of order ‖HI‖−1, the shortest timescale over which the reser-

voir can have any influence on the system. Thus, the time it

takes the reservoir to affect the evolution of the system is not

necessarily related to T .

A model of resonance.—To study the dependence of the

time scales for leakage and fidelity loss on the system and

reservoir parameters, we present an illustrative example. This

is a simple model that exhibits the phenomenon of resonance

between the system and reservoir, and is relevant, e.g., also in

the context of state transfer via spin chains [48]. The system

is a single qubit (k = 1) with Hamiltonian ∆E1σ
z
1/2, and

gap ∆E1. The reservoir can have an arbitrarily large number
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of DOFs and may contain bosonic modes. The only assump-

tions we make about the structure of the reservoir are (i) the

only reservoir DOF which directly couples to the system is an-

other qubit (k = 2), and (ii) the interaction between the reser-

voir qubit and other reservoir DOFs, denoted by h2,rest(t), is

bounded. The total Hamiltonian is

Htot(t) =

2
∑

k=1

∆Ek

2
σz
k +J~σ1 ·~σ2+h2,rest(t)+Hrest(t) , (9)

where Hrest(t) is an arbitrary Hamiltonian that acts trivially on

qubits 1 and 2.

The system qubit is initially in a σz
1 eigenstate, and the

reservoir is in an arbitrary initial state. It turns out that

the system’s behavior differs strongly between the resonance

(|∆E1−∆E2| ≪ |J |) and out-of-resonance (|∆E1−∆E2| ≫
|J |) regimes. To demonstrate this it is useful to transform

to the rotating frame defined by |φ〉 7→ exp[i∆E2t(σ
z
1 +

σz
2)] |φ〉. Both the leakage probability of the system qubit

and the Heisenberg Hamiltonian are invariant under this uni-

tary transformation. Thus, the new total Hamiltonian in

the rotating frame can be obtained from Htot(t) by replac-

ing ∆Ek 7→ ∆Ek − ∆E2, k = 1, 2 and h2,rest(t) 7→
exp[i∆E2σ

z
2)]h2,rest(t) exp[−i∆E2σ

z
2)]. Therefore, the sys-

tem’s energy gap in this rotating frame is ∆E1 −∆E2.

In the resonance regime leakage can occur in a time of

O(|J |−1), the fastest time allowed by the fundamental QSL

bound (5). This happens, e.g., already in the case of single

qubit reservoir, i.e., h2,rest(t) = Hrest(t) = 0, for which Htot

can easily be diagonalized. Under the resonance condition the

states of the system and reservoir qubits are then swapped in

a time of O(|J |−1), so the fidelity with the initial state is lost.

On the other hand, using our QSL bound (6), we find that to

have leakage with probability of O(1) in the out-of-resonance

regime, the minimum required time is lower bounded as

τleak ≥ c|J |−1 max{1, |∆E1 −∆E2|
maxt‖h2,rest(t)‖

} , (10)

representing a potentially drastic increase in the time required

for leakage relative to the minimum time c|J |−1 (where c is

a constant of order one) obtained from more standard QSL

bounds in the form of Eq. (5).

This model has several interesting general implications: (i)

Increasing the system gap can increase fidelity loss because

the system may become resonant with reservoir DOFs; (ii)

The relevant parameter which determines the speed of leak-

age and fidelity loss is not the system gap but the energy

mismatch between the system DOFs and the local reservoir

DOFs, i.e., those that couple directly to the system. If they

are in resonance with the system gap, then the reservoir can

be insensitive to the gap, and leakage can happen in a time

of order τmin ∼ ‖HI‖−1, i.e., as fast as allowed by the fun-

damental QSL bound (5). On the other hand, if this en-

ergy mismatch is large then relaxation is slow, even if the

remote DOFs of the reservoir are in resonance with the sys-

tem. (iii) Our QSL bounds are attainable in the regime where

‖[HI, HR]‖ ∼ ∆E‖HI‖. (iv) Applying these bounds in dif-

ferent rotating frames can lead to different independent con-

straints.

Beyond the ∆E > 2‖HI‖ assumption.—Finally, we dis-

cuss how the large-gap assumption ∆E > 2‖HI‖, used

in deriving our previous bounds, can be relaxed. The key

idea is to transform to a rotating frame in which ∆E be-

comes larger. Let Q+
C (Q−

C ) be the projector onto the sub-

space spanned by the eigenstates of HS whose eigenvalues

are greater (less) than those in I, and transform to the frame

defined by |Φ〉 7→ e−itF (Q+

C
−Q−

C
) |Φ〉, where F ∈ R. As we

prove in the SM [39], the new gap between C and C⊥ becomes

∆E + F . Consequently, bounds (2)-(7) all remain valid for

any F > 2‖HI‖ −∆E, after the substitutions

∆E 7→ ∆E+F , HR(t) 7→ HR(t)−F (Q+
C −Q−

C ) . (11)

Moreover, using this generalization, we find that in the large

F limit, bound (4) implies that sin Θ(t)
2 ≤ 9‖HI‖t, which is

the same as bound (5), up to a constant. Thus, by varying F
from 0 to ∞ we can find a family of bounds which gradually

changes from (4) to (5), and find the strongest bound for fixed

given values of the parameters.

Conclusions.—In this work we introduced state-

independent QSLs on leakage and fidelity loss in a

Hamiltonian open system framework. The reservoir

Hamiltonian HR(t) only enters our bounds via ‖[HI, HR(t)]‖,

implying that only local reservoir modes play a role in our

QSLs. Another important conclusion concerns the common

claim that increasing the system’s energy gap ∆E always

results in better protection from coupling to the reservoir.

The intuitive basis for this claim is the idea that a large

gap suppresses thermal excitations by the Boltzmann factor

e−∆E/kT . Under the BMA, the claim can be justified

provided the spectral density of the reservoir is monotonically

decreasing [49]. However, this condition is often violated,

e.g., as in the case of an Ohmic bath. Our results, which

are derived without approximations, demonstrate that this

intuition is not always correct. Increasing ∆E can result in a

resonance with the reservoir, causing the fidelity to drop on a

timescale independent of ∆E, even if T = 0 and the reservoir

is in a pure state. These results demonstrate the utility of

state-independent QSL bounds for open system dynamics,

and raise new questions about the efficacy of energy gaps in

protecting quantum information.
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