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We present an analytical treatment of a genetic switch model consisting of two mutually inhibiting
genes operating without cooperative binding of the corresponding transcription factors. Previous
studies have numerically shown that these systems can exhibit bimodal dynamics without possessing
two stable fixed points at the deterministic level. We analytically show that bimodality is induced by
the noise and find the critical repression strength that controls a transition between the bimodal and
non-bimodal regimes. We also identify characteristic polynomial scaling laws of the mean switching
time between bimodal states. These results, independent of the model under study, reveal essential
differences between these systems and systems with cooperative binding, where there is no critical
threshold for bimodality and the mean switching time scales exponentially with the system size.

PACS numbers: 87.18.Cf, 87.16.-b, 05.40.-a, 02.50.Ey

Gene expression in living cells is regulated by tran-
scription factors that bind to specific DNA sequences
thereby promoting or repressing transcription of genes.
This mechanism allows for a “digital” response: when
a cell has to make a decision, between expressing a cer-
tain protein, A, or another, B, a biochemical regulatory
network leads the system to a state either dominated by
A, or B. Such behavior is called bimodal. An example
of such decision-making circuits is given by the genetic
toggle switch in which two transcription factors mutually
repress each other [1, 2]. This and other genetic switches
allow cells to switch between distinct phenotypic states
and determine the cell’s fate, in response to environmen-
tal stimuli and/or internal signals [3–6].

Genetic switches are found to exhibit distinct behav-
iors according to whether or not there is cooperative
binding (CB) of transcription factors (see e.g. [7] in the
context of positive feedback). If CB is in play, more than
a single transcription factor molecule can bind to the
DNA sequence, and the binding probability depends on
whether there are molecules already bound to the se-
quence. CB is a driver of bimodality and was previously
thought to be a necessary condition for a bimodal behav-
ior [8–11]. This is since when CB is present in the rate
equations, there are (at least) two stable fixed points cor-
responding to states rich in each type of transcription fac-
tors; in contrast, the absence of CB yields a single stable
fixed point where the two transcription factors coexist.

Yet, in recent years, it has been shown in different mod-
els theoretically [12–14], and experimentally [7], that bi-
modality can emerge even without having bistability at
the deterministic level. In [7], bimodality has been re-
ported in a synthetic budding yeast system, which con-
cluded that the bimodal behavior is induced by demo-
graphic noise. In Refs. [13, 14], the authors have nu-
merically shown that a genetic toggle switch can exhibit
a bimodal behavior due to demographic noise, even in

the absence of CB. To this end, in Ref. [15] the exclu-
sive switch model (ESM) was analytically studied via the
probability generating function. Yet, their analysis, valid
only in limiting cases, cannot uncover how demographic
noise gives rise to bimodal dynamics. Thus, the mecha-
nism of noise-induced bimodality in such systems without
CB remains unclear.

FIG. 1. Top: a schematic plot of the ESM [14]. The repres-
sors A and B cannot be bound simultaneously due to overlap
between their promoter sites. Middle and bottom: the differ-
ence and sum of the copy numbers of A and B obtained from
stochastic simulations [16], with α = 0.01, k = 10 and g = 1.

In this Letter we present an analytical treatment of
the ESM, see Fig. 1, which is found, e.g., as a coarse-
grained description of the lysis-lysogeny switch of phage
λ [1, 2]. We begin by analyzing the case of equal degra-
dation rates of the transcription factors. We show that
bimodality is driven by multiplicative noise, thus the bi-
modal states correspond to states for which the noise in
the system vanishes. We further find a transition between
the bimodal and non-bimodal regimes controlled by the
noise strength, and identify the onset of bimodality as
function of the repressor strength. Finally, we show that
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the mean switching time (MST) from a state rich in A
to a state rich in B scales polynomially in the system
size, unlike typically found in bistable systems. These
claims are then generalized to the case of different degra-
dation rates using an adiabatic approximation. Finally,
we show that our results hold for other models display-
ing noise-induced bimodality such as the general toggle
switch [13, 14]. Our analysis is also available in the Sup-
plemental Material (SM) and Mathematica files.

The genetic toggle switch models mutual inhibition
and degradation of transcription factors. In the case of
ESM, there is an overlap between the promoters of A and
B preventing simultaneous occupation of the two [10, 13],
see Fig. 1. Thus, at the deterministic level, the dynamics
of the free proteins A and B, and the bound proteins, rA
and rB , satisfy the following set of equations [14]

ṅ1 = gA(1− rB)− dAn1 − κ0n1(1− rA − rB) + κ1rA

ṅ2 = gB(1− rA)− dBn2 − κ0n2(1− rA − rB) + κ1rB

ṙA = κ0n1(1− rA − rB)− κ1rA
ṙB = κ0n2(1− rA − rB)− κ1rB . (1)

Here n1 and n2 denote the copy-numbers of proteins A
and B, respectively. Also, gA and gB are the maximal
production rates of proteins A and B, and dA and dB ,
the corresponding degradation rates. In addition, the
bound repressors rA and rB , 0 ≤ rA, rB ≤ 1, are bound
A and B proteins that monitor the production of B and
A, respectively, κ0 denotes the binding rate of proteins
to the promoter while κ1 is the dissociation rate.

For simplicity we will henceforth assume gA = gB = g.
In the limit of dA, dB � κ1, the relaxation of the bound
proteins is fast compared to that of the free proteins.
As a result, in this limit, one can adiabatically eliminate
the fast variables rA and rB and arrive at a set of two
Michaelis-Menten-like rate equations for n1 and n2 [14]:

ṅ1 = f1(n1, n2)− α1n1 , ṅ2 = f2(n1, n2)− α2n2, (2)

where fi(n1, n2) = (1 + kni)/(1 + kn1 + kn2). Here we
have defined the dimensionless repression strength k =
κ0/κ1 as the ratio of the binding and unbinding rates,
α1 = dA/g and α2 = dB/g are the rescaled degradation
rates of A and B, and we have rescaled time t → gt.
We will further assume that α1 = α2 ≡ α, which will be
generalized later on.

In this paper we focus on the strong repression limit,
kni � 1 (i = 1, 2) [14], which is found (e.g.) in a bacterial
genetic switch [8]. Since at the fixed point of system (2)
ni ∼ α−1, see below, the strong repression limit becomes
ε ≡ α/k � 1, and one can naturally define the concentra-
tions of A and B by x1 = αn1, x2 = αn2, respectively.
The scaling of the fixed points allows us to introduce
the effective system size α−1. Yet, while α−1 is propor-
tional to the physical system size N originating from sys-
tem (1), they are not identical. In the SM we discuss in
detail the relationship between our rescaled parameters

and the physical system size, and we also comment about
the biological relevance of our approximations. Finally,
note that at the fixed point, n∗1 = n∗2 ' (1 + ε)/(2α),
see SM, indicating that, in the deterministic limit, the
system converges into an equal state of A’s and B’s.

To account for demographic stochasticity ignored by
Eqs. (2), we can write down the corresponding master
equation for the probability Pn1,n2

to find n1 and n2
molecules of type A and B, respectively. Defining the
step operator E±n F (n) = F (n± 1), we have (see SM):

Ṗn1,n2
=
[
(E−n1

− 1)f1(n1, n2) + (E−n2
− 1)f2(n1, n2)

+ α1(E+
n1
− 1)n1 + α2(E+

n2
− 1)n2

]
Pn1,n2 . (3)

Using the Gillespie algorithm [16], stochastic system (3)
is simulated and shown to exhibit bimodality in some
range of parameters (middle panel in Fig. 1), in sharp
contrast with the deterministic dynamics (2) [13, 14].

To this end, we introduce two auxiliary variables: the
total concentration, w = x1 +x2, and the (adimensional)
concentration difference u = (x1 − x2)/(x1 + x2). Note
that u ≈ ±1 when the system is rich in one type of tran-
scription factor, whereas u ≈ 0 at the deterministic fixed
point. For strong repression, ε� 1, the joint stationary
probability density function (PDF), Ps(u,w), decouples
and satisfies Ps(u,w) = Ps(u)Rs(w) (see SM). Here

Rs(w) = (2πα)−1/2e−
[w−(1+ε)]2

2α , (4)

indicating that the sum of A’s and B’s, represented by w,
is approximately conserved. To find Ps(u), we consider
its Langevin equation (see SM)

du/dt̃ = −u+
√
k
√

1− u2η(t̃), (5)

where t̃ = 2gεαt = 2gα2t/k, t is the physical time used
in (1), and η(t) denotes normalized Gaussian white noise.

Equation (5) captures the stochastic dynamics of
the system. It has already been treated in previous
works [17, 18], and suggests an explanation for the oc-
currence of bimodality in the genetic toggle switch. The
deterministic drag, −u, attracts the system to the stable
fixed point, u∗ = 0, but since at this state the noise has
maximum strength,

√
k, the value of u is driven away,

toward those states at which the noise vanishes, u = ±1.
These are the bimodal states and replace the determin-
istic fixed points in the CB case. How does this result
depend on the repressor strength k? Our previous argu-
ment has assumed that the noise strength at fixed point is
large enough to oppose the deterministic drag. Yet, tak-
ing k → 0, yields u̇ = −u, and thus u(t) → 0 as t → ∞.
We can thus expect that for small k’s, the system fluctu-
ates around u = 0 without exhibiting bimodality. This
transition from unimodality to bimodality is elucidated
by the stationary PDF, Ps(u), of Eq. (5) [19]. We find

Ps(u) = N
(
1− u2

)(1−k)/k
, (6)
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where N = Γ
(
k−1 + 1/2

)
/[
√
π Γ
(
k−1

)
] is a normaliza-

tion constant such that
∫ 1

−1 Ps(u)du = 1. Defining the
critical repressor strength, kC = 1 (where the PDF con-
cavity is changed), we find two distinct regimes: non bi-
modal, k < kC , where the system displays Gaussian fluc-
tuations around the fixed point u∗ = 0, and bimodal, k >
kC , where the system exhibits bimodality and switches
between the states u = ±1. In Fig. 2, Eq. (6) excellently
agrees with simulations for different values of k. Finally,
that PDF (6) satisfies |Ps(u + α) − Ps(u)| � Ps(u), at
u ∈ (−1, 1), validates a-posteriori the Fokker-Planck ap-
proximation, see SM, to the master equation (3) [20, 21].

FIG. 2. Left panel: The PDF Ps(u) for different values of k.
For k > 1, a bimodal PDF appears, for k = 1 the PDF is
flat and, for k < 1, unimodal with a peak on u = 0. Solid
lines are given by Eq. (6) while markers are obtained by sim-
ulations [16], with α = 0.01. Right panels: The MST as a
function of α (upper right panel) and k (lower right panel)
for g = 1. Each marker is obtained by averaging 200 numeri-
cal realizations [16], whereas solid lines are given by Eq. (7).

Equation (5) also allows calculating the MST between
the bimodal states [17, 18]. In the bimodal regime, the
MST τ is the mean time it takes the system to go from
a state rich in one transcription factor, say u = 1, to a
state rich in the other, u = −1, or vice versa. As shown
in [17, 18], for k � 1, the MST of Eq. (5) reads

τ ' (k + 2)/(gα2), (7)

where we have restored the original time units used in (1).
This result (checked against simulations in Fig. 2) de-
pends polynomially on the effective system size α−1,
in contrast with the usually found exponential depen-
dence of the mean escape time in bistable switches, see
e.g. Refs. [22–26]. Hence, the absence of CB allows for
much more frequent switching between different pheno-
typic states, which can be beneficial, e.g., in cases of
severe stress [27].

The previous results can be generalized to the case of
different degradation rates, which can be analyzed using
an adiabatic elimination of the w variable [19, 28, 29]. A
similar treatment can also be used to investigate the case

of different repression strengths k1 6= k2. Yet, as can be
checked, for ε � 1 the effect of uneven k’s on the PDF
and MST is much weaker that the effect of uneven α’s.

We again consider Eqs. (2) assuming, without loss of
generality, α2 < α1, and denote α1 ≡ α and α2 ≡ δα,
where δ ∈ (0, 1]. Defining u = (x1 − x2)/(x1 + x2) and
w = x1 + x2, where x1 = αn1 and x2 = αn2 are the con-
centrations, the stationary PDF, Qs(u), of finding con-
centration u, reads (see SM for details)

Qs(u) = ZPs(u)(1 + u+ δ − uδ)−1−
2

α(1+δ)

× exp

(
1

k

(
1− δ
1 + δ

)[
2u+ ln

(
1− u
1 + u

)])
, (8)

where Ps(u) is given by Eq. (6), and Z is a normalization

factor such that
∫ 1

−1Qs(u)du = 1. Our theory [Eq. (8)]
excellently agrees with simulations, see Fig. 3.

FIG. 3. Left panel: Qs(u) [Eq. (8)] (solid lines) is compared
for different values of δ against simulations [16] (symbols).
Here k = 5 and α = 0.01. Right panel: MST τ versus 1/α,
for k = 50 and g = 1. Each marker is obtained by averaging
200 numerical realizations, while the solid lines are given by
Eq. (9) with A = 50 for δ = 0.8 and A = 100 for δ = 0.9.

The PDF (8) is a tilted version of PDF (6); indeed,
the former reduces to the latter for δ = 1. Since we have
chosen δ < 1, we find that the system resides most of the
time at the metastable mode of u = −1 and occasionally
jumps to the transiently metastable mode of u = 1 (the
opposite would occur for δ > 1). Similarly as for the
case of δ = 1, by decreasing k there exists a transition
from a state rich in one type of transcription factor to
a state where both types coexist, although not equally.
Again, this is determined by a critical repressor strength
kC , satisfying kC = 2/(1 + δ), see SM. For k > kC , both
u = 1 and u = −1 are noise-induced metastable states,
although the system is biased toward u = −1 as the
degradation rate of the corresponding protein (of type
B) is smaller. In contrast, as k is decreased below kC ,
the PDF flips, and peaks at u∗ = −1 +O(ε), see SM.

Since the MST τ from u = −1 to u = 1 turns out
to depend exponentially on the effective system size α−1

(see below), given Eq. (8), τ satisfies in the leading order
τ ∼ Qs(−1)/min[Qs(u)] [22, 30]. Here, the minimum of
Qs(u) is obtained in the close vicinity of u = 1, satisfying
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um ' 1 − 2ε(k/kC − 1)/(1 − δ) ' 1. As Qs(u) diverges
at u = −1, we thus compute the limit lima→0Qs(−1 +
a)/Qs(um) and find, in the leading order of ε� 1

τ ' A
gα

exp

[
2

α(1 + δ)
ln

1

δ

]
. (9)

Here A = A(k, δ) is an unknown prefactor, and we have
restored the physical time units. Equation (9) agrees well
with simulations, see Fig. 3, and in contrast to Eq. (7),
depends exponentially on the effective system size.

Finally, we can use the analysis above for other models
that exhibit noise-induced bimodality such as the general
toggle switch, described by Eqs. (2) with

fi(n1, n2) = [1 + (knj)
h]−1 , i 6= j = 1, 2 (10)

where the Hill coefficient is h = 1 [14]. In principle, the
analysis can be done in the same manner as for the ESM.
Yet, the task is slightly more difficult since the Langevin
equation for w = x1 +x2 does not yield a Gaussian PDF
for Rs(w), which makes the equation for u less tractable.
Nonetheless, we have numerically found the onset of bi-
modality to be at k > kC = 1 and that the MST behaves
similarly to the ESM, see Fig. 4. In sharp contrast, the
genetic toggle switch model with CB, for which fi(n1, n2)
are given by Eq. (10) with Hill coefficient h ≥ 2, displays
(at least) two stable fixed points. In this case there is no
threshold for bimodality when ε � 1, and one expects
an exponential dependence of the MST on the system’s
size [31]. In Fig. 4 we compare the MSTs and PDFs of
several models with and without CB. Our simulations in-
dicate that the MST in the case of CB with h ≥ 2 yield
a stretched-exponential dependence of the MST on the
system’s size. This is a nontrivial result and requires a
further study. While this is beyond the scope of this pa-
per, we believe the formalism we have developed can be
used to study toggle switch models with CB as well, as
long as we are in the strong repression limit.

We have presented an analytical treatment of the ESM
demonstrating a bimodal behavior in the absence of two
stable fixed points at the deterministic level. Bimodal-
ity is induced by multiplicative noise: the noise strength
vanishes at the bimodal states whereas it is maximal at
the single stable fixed point. This phenomenon, which
has attracted much interest in various fields [17, 32–36],
is linked here to previous numerical [13, 14] and experi-
mental [8] findings on the genetic toggle switch.

We have shown that bimodal behavior ceases to oc-
cur if the noise strength in the system, controlled by the
repression strength k, is reduced below a critical thresh-
old. This transition, absent in bistable systems, is sim-
ilar to that found in other noise-induced bimodal sys-
tems [17, 32, 37]. Moreover, we have shown here that
the MST between bimodal states exhibits a polynomial,
rather than exponential, scaling on the system size. In

FIG. 4. (Top) MSTs for five different models: ESM, general
toggle switch (TS) without (w/o) CB, and TS with (w) CB
with h = 2, 2.5, 3, for k = 1.5. Each point is obtained by
averaging 200 realizations. (Bottom) PDFs of the difference
and sum of the copy numbers n1 and n2, for k = 5 and α =
0.04. While P (n1 + n2) almost coincides for all models, the
“potential barrier” for switching given by max[P (n1 − n2)] −
min[P (n1 − n2)], is much shallower for models without CB.

genetic toggle switches, the noise is controlled by the re-
pression strength k, suggesting that bimodality can be
achieved or lost by biological fine tuning of reaction rates.
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