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Measuring the ac magnetic response of a type II superconductor provides valuable information
on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a
microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show
that λC is determined by the jump in the pinning force, in contrast to the critical current jc which
involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ
for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the
latter situation. We compare our findings with new experimental data and show the potential of
this technique in providing information on the material’s pinscape.
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Technologically useful superconductors are of second
type and acquire their desired transport and magnetic
properties through vortex pinning, i.e., vortices [1] get
immobilized by material defects. Understanding and
characterizing the underlying pinning landscape (or pin-
scape) is of great importance but presents quite a
formidable task, with implications reaching beyond su-
perconductivity, e.g., in studies of disordered polymers [2]
or magnetic domain walls [3]. Measurements of dc trans-
port properties, either dynamically through the current–
voltage characteristic [4] or statically through magneti-
zation [5], are standard techniques to gain information
on the pinscape. Similarly, the ac magnetic response
of superconducting samples [6] provides insight into the
shape of pinning potentials. Unfortunately, the relation
between the measured penetration depth of the ac signal,
the so-called Campbell length λC, and the parameters of
the pinscape is only known on a phenomenological level.
In this letter, we present a microscopic derivation of the
Campbell length within the framework of strong pinning
theory, thereby providing access to microscopic param-
eters of pinning defects and substantially enlarging the
scope of applications of this measurement technique.

Probing superconductors via their ac magnetic re-
sponse goes back to the 60-ies and culminated in Camp-
bell’s work [6] which provided the first consistent expla-
nation of the penetration phenomenon (see Refs. [7] for
further developments): for small ac magnetic-field ampli-
tudes hac and frequencies ω, vortices oscillate reversibly
within their pinning potentials (described as harmonic
wells αx2/2), with the external signal hac penetrating
the sample on a distance λC ∝ B/

√
α of order microme-

ters. Later work by Lowell [8] and Campbell [9] provided
a more quantitative but still phenomenological under-
standing within a model pinscape. Here, we make use
of the strong pinning scenario allowing us to perform a
quantitative and microscopic analysis of the ac magnetic
response. In particular, we find the dependence of the
Campbell penetration depth λC on the vortex state, e.g.,

the critical (Bean [5]) state with a vortex density gradient
supporting the critical current density jc [10] or a field-
cooled state with a constant induction B, and predict
the occurrence of new hysteretic effects. The comparison
with recent experiments [11] confirms our predictions.

Consider a superconductor occupying the half-space
X > 0, the magnetic induction B(X, t) = B0 + δB(X, t)
directed along Z, and the screening current j flowing
along Y (capital and lower case letters distinguish be-
tween macroscopic and microscopic coordinates). The
equation of motion for the macroscopic vortex displace-
ment U(X, t) reads

η∂tU = FL(j, U) + Fpin(X,U), (1)

with the Lorentz force FL balanced by dissipative and
pinning forces (η denotes the viscosity [12]). The dis-
placement U(X, t) relates to the induction via δB(X, t) =
−B0 ∂XU(X, t) and is driven at the surface X = 0 by the
small external field hac � B0, δB(0, t) = hace

−iωt. The
Lorentz force FL = (j0 + δj)B/c involves an ac com-
ponent δj = −c∂XδB/4π and writing the pinning force
Fpin = F0 + δFpin, with F0 the force density in the initial
vortex state balancing the dc Lorentz force j0B0/c, we
obtain the dynamical equation

η∂tU − (B2
0/4π)∂2XU − δFpin(U) = 0. (2)

Following [6], one assumes small oscillations of the vor-
tices near the potential minima. This motivates the phe-
nomenological Ansatz δFpin(U) = −αU for the pinning
force density. Solving (2) for the displacement field,

U(X, t) = λC(hac/B0)e−X/λCe−iωt (3)

with λ2C(ω) = B2
0/4π(α− iωη), (4)

results in the Campbell length λC = λC(ω = 0) =
(B2

0/4πα)1/2 at low frequencies.
Here, our goal is to derive an expression for δFpin start-

ing from a microscopic perspective. This can be done
within the framework of strong pinning theory which goes
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back to work of Labusch [13] and Larkin and Ovchinnikov
[14], with recent further studies on the critical currents
in strong and weak pinning scenaria [15], numerical sim-
ulations of vortex motion [16], and the current–voltage
characteristic [17]; note that the qualitative framework
of weak collective pinning theory [14] is not sufficient to
develop a quantitative understanding of λC.

Consider a representative vortex within the flux-lattice
driven along x on a trajectory described through the
asymptotic coordinate r∞ = (x, b) at large |z|; the dis-
tance b along y is the impact parameter with respect to a
defect at the origin. Within the strong pinning context,
defects act individually, generating a pinning potential
ep(r, z). Considering a trajectory with maximal pinning,
i.e., b = 0 and including the deformation energy of the
vortex, its total energy as a function of x takes the form
(we assume a point-like defect with ep(x, z) = ep(x)δ(z)
[15])

epin(x) =
1

2
C̄u(x)2 + ep[x+ u(x)], (5)

with u(x) the microscopic displacement field in the plane
z = 0, see Fig. 1, and C̄ the effective elasticity of the
vortex embedded within the lattice,

C̄−1 =
1

2

∫
d3k

(2π)3
1

c66(k2x + k2y) + c44(k)k2z
. (6)

Here, c66 and c44(k) denote shear and dispersive tilt
moduli and proper integration in (6) provides the result
C̄ ∼ (a20/λ)

√
c66c44(0) with a−20 = B0/Φ0 the vortex

density (Φ0 = hc/2e is the flux unit and λ the London
penetration depth). Minimization of (5) with respect to
u (at fixed x) generates the self-consistency condition

C̄u(x) = fp[x+ u(x)] (7)

for the displacement field u(x), where fp(x) = −e′p(x)
is the bare force profile of the pinning defect, the prime
denoting derivative with respect to x. The maximal slope
in fp(x), realized at xm, defines the regime of strong
pinning [13]: for κ ≡ [f ′p(xm)]/C̄ > 1, the condition
(7) generates two stable solutions for the displacement
field u(x), a pinned and an unpinned branch, see Fig. 1.
The condition κ = 1 is the famous Labusch criterion [13]
separating strong (κ > 1) from weak (κ < 1) pins.

Assuming a homogeneous random distribution of de-
fects with small density np, see below for a quantitative
criterion, the macroscopic pinning force density Fpin de-
rives from averaging the pinning forces fp[x+uo(x)] over
all positions |x| < a0/2 within a lattice period, with uo
denoting the branch occupied with vortices. This occu-
pation depends on the state preparation, e.g., for a Bean
state with vortices driven along x, the occupation of the
pinned branch extends over the interval [−x−, x+], see
Fig. 1, such as to produce the maximal force Fpin = Fc,

Fc = np〈fpin〉 = np
t⊥
a0

∫
a0

dx

a0
fpin(x)|o, (8)

u

−x+

unpinned
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−x−

fpin
x− x+

pinned

x

x
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FIG. 1. Pinning energy epin and force fpin in a strong pin-
ning situation for a Lorentzian potential. The bistable solu-
tions near the defect describe pinned and unpinned branches.
Thick lines (blue) mark occupied branches in the Bean state,
dotted lines are unstable solutions, dashed lines are the jumps
making up for ∆epin and ∆fpin. Left: strong pinning situa-
tion for a representative vortex. The microscopic displace-
ment u(x) = fpin(x)/C̄ has the same shape as fpin(x). Right:
change in branch occupation when the vortex system moves
by U .

where fpin(x) ≡ fp[x + u(x)] and |o refers to the occu-
pied branch uo(x) (we assume maximal pinning for all
trajectories with 2|b| < t⊥ ' ξ, ξ the coherence length).
Making use of Eqs. (5) and (7), we derive the relation
fpin(x) = −depin(x)/dx and arrive at a simple expres-
sion for the critical current density jc = (c/B0)Fc,

jc =
c

B0
np
t⊥
a20

∫
a0

dx [−depin(x)/dx|o] =
cnpt⊥

Φ0
∆epin, (9)

where ∆epin is the sum of jumps at−x− and x+ in epin(x)
where the occupation changes between unoccupied and
occupied branches [13, 14], see Fig. 1.

Equipped with this microscopic understanding of
pinned vortex matter, we return to the problem of ac
magnetic response. Within strong pinning, we can follow
the changes in the occupation of pinned and unpinned
branches as vortices are driven by the ac-magnetic field
and determine the time dependent and inhomogeneous
change in the pinning force δFpin[U(X, t)]. A macro-
scopic shift U > 0 pushes vortices in the critical direc-
tion of the Bean state; vortices at −x− and x+ jump
to pinned and unpinned branches, respectively, leaving
the (critical) branch occupation unchanged and hence
δFpin(U > 0) = 0. On the other hand, for a negative
displacement U < 0 vortices relax back in their pinning
wells and the boundaries between occupied and unoccu-
pied states are shifted to the left, see Fig. 1. This results
in a change of the macroscopic restoring force

δFpin(U <0) = np
t⊥
a20

∫
a0

dx[fpin(x)|o,U−fpin(x)|o,0], (10)

where the index |o,U refers to the occupation where vor-
tices have been shifted by U . Expanding the integrand
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for small U , we arrive at the expression

δFpin(U < 0) = np
t⊥
a20

∫
a0

dx dfpin(x)/dx
∣∣
o
U, (11)

resulting in the strong pinning result for δFpin,

δFpin(U) ≈ −np(t⊥/a20)∆fpin Θ(−U)U, (12)

with ∆fpin the sum of jumps in the function fpin.
Inserting this result into (2) generates a complex vortex

dynamics as flux enters the sample in a sequence of diffu-
sive pulses until the field is raised to B0 +hac, see [18] for
a detailed description of this initialization process. Af-
ter saturating the sample at this higher field level, the
displacement U(X, t) assumes the form

U(X, t) = U0(X)− λC(hac/B0)e−X/λC [1− e−iωt], (13)

with U0(X) = (−hacX + φ)/B0 generating the shift in
field B0 → B0(1− ∂XU0) = B0 + hac and φ denoting the
total flux (per unit length along Y ) that has entered the
sample [19]. The second term accounts for the penetra-
tion of the external field with respect to the new Bean
state, δB(X, t) = hace

−X/λC(1 − e−iωt). The Campbell
penetration depth can be expressed by the microscopic
parameters, the average curvature d 2epin(x)/dx2, of the
pinscape,

B2
0

4πλ2C
=−npt⊥

a20

∫
a0

dx d 2epin(x)/dx2
∣∣
o
=
npt⊥
a20

∆fpin. (14)

Making use of the estimates ∆fpin ∼ fp, t⊥ ∼ ξ, and
κ ∼ fp/ξC̄, we find that λ2C ∼ λ2/(κnpa0ξ

2) > λ2

with κnpa0ξ
2 � 1 the small parameter defining the

three-dimensional strong pinning regime [15]. Compar-
ing the results for jc and λ−2C [Eqs. (9) and (14) with
∆epin ∼ f2p/C̄], we observe that these two quantities ad-
dress different properties of the pinscape, the jumps in
pinning energy and force, respectively. As a consequence,
the simple scaling jc ∼ cαξ/B0 ∼ (c/4π)ξB0/λ

2
C previ-

ously conjectured on the basis of the phenomenological
result (4) turns out incorrect and has to be replaced by
jc ∼ (c/4π)κξB0/λ

2
C ∝ [∆fpin]2. Hence, care must be

taken when translating measured data on λC into predic-
tions for jc [11].

Next, we turn to the field-cooled state with j0 = 0
and F0 = 0. Following (14), the determination of the
jumps in the, now symmetric, occupation of fpin is the
central task in the calculation of λC. Assuming defects
in the form of metallic or insulating inclusions, one can
show [18] that pinning turns on smoothly upon cross-
ing the Hc2(T ) line. Hence, the vortex system changes
from weak to strong pinning upon decreasing the tem-
perature T below the Labusch temperature TL defined
through κ(TL) = f ′p(xm)/C̄|TL

= 1. At TL, the pin-
ning force fpin(x) for the first time develops an infi-
nite slope at x0L, [dfpin/dx|x0L

]TL
= ∞. Lowering the

Tmin

fpin

(a) (b)

(c)

x+ a0/2

x+x+

x−

x− xfar

xclose

ZFC FC

TL

a0 a0

0 0

x− x+x0L x0L x− x+

x0L

x0L

Tmin TL

fpin

FIG. 2. Evolution of the pinning force fpin crossing over from
weak to strong pinning. The jump in the occupation between
pinned and unpinned branches first appears at x0L and re-
mains there if the branch edges at x± move away in opposite
directions with decreasing temperature, x− < x0L < x+, see
(a). If x0L < x− < x+, see (b), the jump is pinned to x− and
hysteretic effects show up upon thermal cycling. (c) Pinscape
fpin(x) at high magnetic fields involving only pinned and un-
stable branches. The relevant jumps are located at x+ for the
zero-field-cooled sample (left) and at a0/2 for the field-cooled
situation (right).

temperature below TL, the function fpin(x) develops two
branches, pinned and unpinned ones, which start and end
at the boundaries ±x+ and ±x− close to ±x0L. In or-
der to decide upon the branch occupation below TL, we
have to determine the relative arrangement of the posi-
tions x0L and x±. We distinguish three cases, of which
(a) is the simplest one, see Fig. 2(a), with x± moving
away from x0L in different directions. In this case, the
branch occupation jumps between pinned and unpinned
at ±x0L and a small ac field produces a small reoccu-
pation around these points; the relevant jumps in fpin
thus appear at ±x0L, with ∆fpin = 2∆fpin|x0L entering
the expression for the field-cooled Campbell length (14).
Case (b) shown in Fig. 2(b) describes the situation where
both branches grow beyond x0L with decreasing temper-
ature, x0L < x− < x+. Then, vortices between x0L and
x− jump to the pinned branch and the relevant jump in
the occupation is pinned to x−. Accordingly, the jump in
the pinning force entering λC is given by 2∆fpin|x− . Fi-
nally, case (b’) involves a shrinking of the branches with
respect to x0L, i.e., x− < x+ < x0L, and the jump in
occupation is pinned to x+, ∆fpin = 2∆fpin|x+

. As a
result, the Campbell length λC may differ for the zero-
field-cooled (Bean type) and field-cooled vortex states in
various respects, depending on the case at hand.

Quantitative analytic results can be obtained at tem-
peratures below but close to TL where κ & 1. Expanding
the bare pinning force fp(x) around xm (where f ′′p van-
ishes), fp(x) ≈ fp(xm) + f ′p|xm

(x − xm) − γ(x − xm)3/3
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with 2γ = −f ′′′p |xm
> 0, we obtain the result

x± = x0 ±
2

3

√
C̄

γ
(κ− 1)3/2, (15)

with x0 = xm−fp(xm)/C̄ > xm the generalization of x0L
to temperatures below TL, x0(TL) = x0L. The jumps at
±x± then are equal and smaller than the jumps at ±x0L.
For case (a), this results in different (by ≈ 7%) Campbell
lengths λC|FC < λC|ZFC, while for the cases (b) and (b’)
the two lengths are equal. For large κ � 1, the three
jumps are all different, resulting in different Campbell
lengths with λC|FC+ < λC|ZFC < λC|FC− , where ± refer to
the scenaria involving the large and small jumps at x±.

Which of the above scenaria is realized in a specific
case depends on the temperature dependence of elastic
and pinning forces. Close to TL, the behavior of x± is
dominated by x0 ∼ x0L + aτL with τL = 1 − T/TL and
the sign of the prefactor a deciding upon which case,
(b) or (b’), is realized. On the other hand, for larger τL
the second term in (15), ∝ (κ − 1)3/2 ∝ τ

3/2
L , becomes

dominant and case (a) is realized.

Furthermore, hysteretic behavior of λC appears in
cases (b) and (b’) when first cooling and subsequently
reheating the sample (from Tmin). Indeed, when both
branches increase or decrease below x0L upon cooling,
the relevant jump appears at the branch edge xclose that
is closer to x0L. On reheating, the jump first remains
pinned to xclose(Tmin) until the other edge xfar further
away from x0L is hit, whereupon the jump follows the
position xfar(T ), see Fig. 2(b). Otherwise, in case (a) or
when xclose goes through an extremum, no hysteresis ap-
pears upon thermal cycling as long as the jump in fpin is
realized [20] away from the branch edges at ±x±.

Next, we briefly discuss the situation at high fields
when the pinned branch extends beyond the vortex sep-
aration a0, x+ > a0/2. Close to Hc2 , the bare pin-
ning force is well approximated by the lowest harmonic,
fp(x) ≈ f0 sin(2πx/a0); the competition with elastic
forces then produces the multi-valued function fpin(x)
shown in Fig. 2(c). In this situation, the branch edges
at ±x− have vanished and only the pinned branches be-
tween ±x+ survive. For the Bean state, the jump in force
(∆fpin|x+

) determining λC is located at x+. For the field-
cooled state, the (slightly larger) jump in force is located
at a0/2 instead, hence λC|FC . λC|ZFC; no hysteresis is
expected in this regime. Upon decreasing the field, ad-
ditional harmonics become relevant in the description of
fp(x) and its maximal slope at xm moves away from a0/2,
i.e., xm < a0/2. As x0L also decreases below a0/2 an un-
pinned branch starts developing and we cross over to the
low-field domain involving both the pinned and unpinned
branches. Note that neither of these regimes is small but
rather occupy similar size regions within the H-T phase
diagram.
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FIG. 3. Experimental (left) and theoretical (right) traces of
the Campbell length λC(T ) for zero-field-cooled (blue) and
(hysteretic) field-cooled (red) states at low (main panels) and
high (inserted panels) magnetic fields.

In Fig. 3 we compare our main new findings, the de-
pendence of λC on the vortex state and the appearance of
hysteretic effects, with measurements on a single crystal
superconductor SrPd2Ge2 (isostructural to the Fe- and
Ni-pnictides) using a tunnel-diode oscillator technique,
see Fig. 4(a) of Ref. [11] (shown are magnified traces at
0.02 T and 0.3 T). A small ac excitation field hac ≈ 20
mOe is superimposed on the dc field ensuring linearity
of the response, see Ref. [21] for experimental details.
Theoretical results for the Campbell lengths are found
by solving (7) and extracting the relevant jumps ∆fpin,
assuming a pinning model based on insulating inclusions
[18] (we use standard Ginzburg-Landau scaling). All fea-
tures, the dependence of λC on the state preparation, the
appearance of hysteresis upon thermal cycling, as well
as the reversal from λC|ZFC < λC|FC− at low fields to
λC|FC < λC|ZFC at high fields, are visible in the experi-
ment and captured by the model; note that other pinning
models based on metallic inclusions or δTc-, δ`-pinning
[22] (` the mean free path) produce different behavior.

In conclusion, making use of strong pinning theory, we
have presented a microscopic and quantitative expression
for the Campbell length λC that captures specific proper-
ties of the pinscape. Our theory predicts the dependence
of λC on the vortex state (FC versus ZFC) and explains
the appearance of hysteretic effects, with results that are
in good agreement with experiments. With the new in-
formation at hand, the pinscape can be analyzed in much
more detail via deliberate state preparation ’in between’
the field- and zero-field-cooled extremes, thus opening up
the new field of ‘pinscape spectroscopy’.
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