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Abstract 

We formulate a microscopic, no adjustable parameter, theory of activated relaxation in 

supercooled liquids directly in terms of the repulsive and attractive forces within the 

framework of pair correlations. Under isochoric conditions, attractive forces can 

nonperturbatively modify slow dynamics, but at high enough density their influence 

vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature 

apparent Arrhenius behavior and density-temperature scaling are predicted. Our results 

are consistent with recent isochoric simulations and isobaric experiments on a deeply 

supercooled molecular liquid. The approach can be generalized to treat colloidal gelation 

and glass melting, and other soft matter slow dynamics problems.  
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The fundamental question of the role of attractive forces in determining the slow 

dynamics of crowded systems is crucial in diverse soft matter contexts [1-12].  Strong, 

short range attractions can trigger aggregation, gelation and emergent elasticity in 

colloidal, protein and macromolecular systems [1-4]. The role of slowly varying 

attractive forces in supercooled liquid dynamics and glass formation is also a critical 

open question [5-12]. For all these systems, the construction of a predictive microscopic 

theory that accurately incorporates attractive forces remains a major challenge. In this 

Letter we formulate a new statistical dynamical approach broadly relevant to these 

problems. For concreteness, and because of its fundamental interest, we focus on 

supercooled liquids.  

Given the van der Waals (vdW) idea that the equilibrium structure of non-

associated liquids is dominated by the repulsive branch of the interparticle potential [13-

15], one might expect repulsions dominate slow dynamics. However, recent constant 

volume simulations [6-9] of binary sphere mixtures, which probe the initial ~5 orders of 

magnitude of slowing down, have challenged this idea. They found that the Lenard-Jones 

(LJ) liquid and its Weeks-Chandler-Andersen (WCA) analog, that contains only the 

repulsive branch of the potential, indeed exhibit nearly identical equilibrium structure, 

but at lower liquid-like densities and temperatures the attractive forces slow down 

relaxation in a non-perturbative manner [6-9]. Key findings include the following [6-9]. 

(i) The large dynamical differences between the LJ and WCA liquids decrease, and 

ultimately vanish, as the fluid density is significantly increased. (ii) At relatively high 

temperatures, an apparent Arrhenius behavior is found for both systems over roughly one 

decade in time with a barrier that grows as a power law with density. (iii) LJ liquid 
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relaxation times at different densities collapse by scaling temperature with the high 

temperature activation barrier, but such a collapse fails for the WCA fluid. (4) The 

“onset” temperature at which apparent Arrhenius behavior begins to fail scales with the 

Arrhenius barrier height [8]. 

The above simulation findings have been argued [5, 9] to contradict all existing 

force-level “microscopic” theories (e.g., mode coupling theory (MCT) [16, 17], nonlinear 

Langevin theory (NLE) [18]), and thus pose a major open problem in glass physics. It 

was suggested [9] that the origin of this failure might be their neglect of higher order than 

pair correlations. Subsequent simulations found temperature-dependent triplet static 

correlations do differ for LJ and WCA fluids [19]. Moreover, the “point-to-set” 

equilibrium length scale (determined by beyond pair correlation function information) 

correlates well with the dynamical differences of the two fluids [20].   

In this Letter we re-formulate the starting point for constructing microscopic 

dynamic theories to explicitly treat attractive forces at the simplest pair correlation level. 

The key new idea is to analyze the slowly relaxing component of the force-force time 

correlation function associated with caging directly in terms of the bare forces in real 

space. This avoids replacing Newtonian forces by effective potentials determined solely 

by pair structure, a ubiquitous approximation [15-18] that results in theories that are 

effectively “blind” to the dynamical differences between WCA and LJ liquids [7, 9]. The 

predictions of our approach are in good agreement with isochoric simulations [6-9, 11] 

and isobaric experiments on molecular liquids [21-23].   
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 The foundation, or starting point, for many microscopic dynamical theories is the 

force-force time correlation function, , where  is the total force 

on a tagged spherical particle due to its surroundings [16-18, 24]. Its calculation involves 

the full many body dynamics and thus a closure approximation must be formulated. In 

the ideal MCT and single particle naïve MCT (NMCT) [16, 17], the standard closure 

projects real forces onto the slow bilinear density mode, and four point correlations are 

factorized into products of pair correlations in a Gaussian manner, which in Fourier space 

yields: 

  , (1) 

where β = 1 / kBT  is the inverse thermal energy, ρ  is the fluid number density, 

S(k) = 1+ ρh(k)is the static structure factor, h(r) = g(r) − 1 is the nonrandom part of the 

pair correlation function g(r), and Γ s ( Γc ) is the single particle (collective) dynamic 

structure factor normalized to unity at t=0. Real forces are replaced by an effective force 

vertex  in Eq. (1) determined entirely by g(r) or S(k)[17]:  

   (2) 

where the direct correlation function C(k) = ρ−1[1− S −1(k)] and the real space effective 

force is . Use of the projection idea implies the dramatic dynamical differences 

of dense WCA and LJ fluids found in the simulations cannot be captured. 

 To explicitly include the bare forces we re-formulate the dynamical vertex of 

NMCT based on alternative idea we call the Projectionless Dynamics Theory (PDT). 
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Inspiration comes from prior work in chemical and polymer physics in the normal liquid 

regime [25-27]. Technical details are in the supplementary material (SM) [28], but the 

essential idea is to first analyze the force-force time correlation function in real space as: 

   (3) 

where  is the interparticle force (where r is now a field variable),  

is the instantaneous fluid density a distance  from a tagged particle at the origin, at time 

t, and . The object  is a 

multi-point space-time correlation of fluid collective density fluctuations in the vicinity of 

the tagged particle relative to the average density inhomogeneity, where 

; it is approximated by its bulk liquid form factorized to the 

pair correlation level [25,26]. The resulting K(t) then has exactly the same form as Eq. 

(1) but with a different force vertex given by 

   (4) 

which is a Fourier-resolved structurally-averaged Newtonian force. The qualitatively new 

feature is that the real forces now directly enter, and thus identical equilibrium pair 

structure does not imply identical dynamics.   

           The slow dynamics experimentally probed in the deeply supercooled regime, and 

also the precursor regime accessible to simulation, involves activated motion [6-9, 29]. 

Thus, to implement the PDT idea requires a theory of activated relaxation formulated at 

the level of forces. We employ the well-tested “Elastically Collective Nonlinear Langevin 
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Equation” (ECNLE) theory [30,31]. Based on using the NMCT force vertex, this 

approach has been shown to accurately capture alpha relaxation in hard sphere fluids and 

colloidal suspensions over 5-6 decades [30], and molecular liquids over 14 decades based 

on adopting a lightly coarse-grained mapping to an effective hard sphere fluid [31]. 

Relevant technical details are reviewed in the SM [28]. Briefly, the key physical idea is 

that knowledge of the slowly decaying component in time of the force memory function 

in Eq. (1), when combined with the local equilibrium approximation that two particles 

move relative to each other in a manner that preserves their spatial correlation as 

determined by g(r), allows for the self-consistent construction of the effective force a 

single particle experiences due to its local environment as a function of its instantaneous 

scalar displacement, r . This effective force is written as the gradient of a (defined) 

“dynamic free energy”, −∂Fdyn (r) / ∂r  , which enters a stochastic NLE for the tagged 

particle trajectory. Integration of this force yields Fdyn (r) . Longer range collective effects 

enter via the cooperative elastic distortion of the surrounding fluid required to 

accommodate the irreversible, large amplitude local hopping event described by Fdyn (r)  

[30,31].  The alpha relaxation event has a mixed local-nonlocal character, with a total 

barrier determined by coupled cage and elastic contributions computed from the dynamic 

free energy. The alpha time is identified as the mean barrier hopping time computed [27, 

29] using Kramers theory [24]. Crucially, in the PDT framework the basic structure of the 

ECNLE approach remains unchanged, but the fundamental starting point is now Eqs. (1) 

and (4), not (1) and (2). Thus, both pair structure and bare forces influence all aspects of 

the theory. 
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 We first compare PDT theory predictions for the hard sphere fluid to its analog 

based on Eq. (2). We find that the NMCT and PDT force vertices for the local kd > 2π  

regime are analytically identical for dense fluids, M (k) ∝ g(d)cos(kd) / (kd) [33]. The 

full numerical treatment reveals that both theories predict qualitatively identical density-

dependent alpha relaxation times. Quantitatively, use of the NMCT force vertex yields 

results that agree better with experiment and simulation (see SM) [28].  

For thermal liquids with attractive interactions, we propose a hybrid approach, in 

analogy with prior successful microscopic theories of diverse dynamical phenomena that 

treat the repulsive and slowly varying attractive forces differently [25-27]. Specifically, 

we adopt the NMCT vertex for repulsive forces and the PDT vertex for attractive forces:  

   (5) 

where  is the attractive part of the LJ force. For the WCA fluid, only the first term is 

present. For LJ liquids, the cross term in Eq. (5) is dropped for multiple reasons. (a) It is 

the simplest (seemingly inevitable) approximation consistent with the use of different 

dynamic closures for repulsive and attractive forces. (b) Physically, one expects cross 

correlations are weak since for vdW liquids the attractive and repulsive forces vary on 

different length scales. (c) The PDT approximation for  is known to be more 

accurate for slowly varying attractions than harsh repulsions [23].   

To implement the theory, the WCA repulsion is mapped to an effective hard 

sphere using the Barker-Henderson (BH) [15, 35] expression deff =
0

21/6

∫ dr 1 − e−βuWCA (r )⎡⎣ ⎤⎦ . 

This mapping is reliable based on recent simulations [20]. Fluid structure is computed 
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using Percus-Yevick (PY) theory [15] with a temperature-dependent effective packing 

fraction, ηeff (T ) = deff (βε) / σ( )3
η , where η ≡ πρσ 3 / 6 , and ε  and σ  are the LJ energy 

and length scale, respectively. To isolate the dynamical consequences of attractive forces, 

the literal vdW picture that g(r)  of the LJ and WCA liquids are identical is adopted [13-

15]. While the BH mapping and PY theory become less accurate at high densities, no 

qualitative changes to our results are expected if alternative approximations are 

employed. Moreover, neither accurate integral equation theory nor simulation data for the 

WCA g(r) of a one-component liquid in the (deeply) supercooled regime are available. 

Most importantly, the essential leading order origin of our new results is not related to 

pair structure, but rather the explicit accounting for attractive forces on slow dynamics. 

 Under isochoric conditions, ρ  and η  are fixed, but ηeff grows with cooling via 

deff (βε). Representative calculations are shown in Figure 1 for η = 0.48  and η = 0.54 . 

For η = 0.48 , the LJ fluid relaxes much slower than its WCA fluid analog at lower 

temperatures. As η  increases, these differences smoothly decrease (not shown), and the 

relaxation times of the two systems are nearly identical at η = 0.54 . These results are in 

accord with the simulation trends [6-9]. To develop an intuitive understanding, we 

compute the long wavelength ( k = 0 in Eq. (4)) effective forces that enter the vertex: 

M ∞, R ≡ 4π kBT deff
2 g(deff )  for repulsions and 

 
for attractions. 

The inset of Fig.1 shows that for η = 0.48  the repulsive forces dominate at high 

temperatures where the LJ and WCA relaxation times are similar. The attractive force 

contribution grows faster than the repulsive analog with cooling and ultimately 
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dominates, consistent with the main frame results. For η = 0.54  the repulsions dominate 

at all temperatures. 

 As seen in simulation [6-9], Figure 1 shows that an apparent Arrhenius behavior 

is predicted at high temperature which is physically due to the unimportance of the 

collective elasticity aspect of the alpha relaxation process. One can ask whether the 

theoretical relaxation times for different packing fractions collapse if temperature is 

scaled by the apparent Arrhenius barrier, E∞ (η). In agreement with simulations [6,8], for 

WCA fluids no collapse is found (see SM), but for LJ fluids Fig. 2 shows an excellent 

collapse over 7 decades. The inset shows the Arrhenius barriers are nearly identical for 

both fluids, and grow as βE∞ ∝ η9.3 . The high apparent power law exponent (simulation 

[6] finds ~5) is expected if the continuous repulsion is replaced by an effective hard 

sphere potential [10]; our exponent value is in excellent agreement with simulations that 

explored consequences of the WCA to hard sphere mapping [22]. We have also 

computed an “onset temperature”, Ton , defined as when the apparent Arrhenius behavior 

first fails. From Fig. 2 we find E∞ ≈ 2kBTon , consistent with simulation [6-9]. All the 

theoretical results discussed above are in good agreement with the trends found in the 

isochoric simulations performed in the dynamic precursor regime [6-9]. 

 Isochoric simulations have also shown that a system interacting via a repulsive 

inverse power law (IPL) potential, uIPL (r) = Aε σ / r( )n , has the same g(r) as the LJ fluid 

if A and ε are properly tuned [11]. The relaxation times of the LJ and IPL fluids are then 

found to be nearly identical [11]. In the SM [28] we show that our theory is consistent 
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with this “hidden scale invariance” feature and the idea that the dynamical differences 

between the LJ and WCA fluids is repulsive force truncation [10,11].   

 We now consider experimental systems, which are typically studied at constant 

pressure and over 14 or more decades in relaxation time [21,29]. We employ a model LJ 

equation-of-state [36] (see SM) to perform constant reduced pressure ( ) 

calculations. The effective packing fraction of the reference hard sphere fluid now varies 

with temperature due to both an increase of effective particle size deff  with cooling and 

thermal contraction (η increases). Results for the dynamically LJ and WCA fluids (with 

the same structural input) are shown in Figure 3. The two fluids have nearly identical 

relaxation times. At atmospheric pressure ( ), a one-decade difference is visible, 

which vanishes as pressure increases because density grows with cooling (Fig. 3 inset).  

 Quantitative contact with isobaric experiments is made based on Fig. 3. A kinetic 

vitrification temperature Tg  is defined as when  for a typical 

 (horizontal line in Fig. 3). For LJ liquids at atmospheric pressure we find 

, and a fragility of mP=1 atm = 62  significantly larger than its isochoric analog 

of mV ≈ 26 . This fragility difference is consistent with experiment [21]. For the LJ 

liquid, the theory also properly predicts Tg increases and fragility decreases with pressure 

(not shown). The vdW liquid orthoterphenyl (OTP) has roughly  [37,38]. 

Using this, we obtain Tg = 216K , in reasonable accord with the experimental Tg= 246K

[21,23]. Figure 4 demonstrates that the full relaxation time profiles in the reduced inverse 
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temperature Angell representation (vertically shifted to match the high temperature OTP 

Arrhenius data [23]) are in excellent agreement with experiment.  

 The inset of Fig. 4 attempts to collapse both the isobaric and isochoric LJ liquid 

relaxation times over a wide range of densities and pressures. The result is consistent 

with density-temperature scaling [10, 21]. The inset also shows that the density scaling 

exponent is high (~10), consistent with recent simulations that mapped WCA repulsions 

to effective hard spheres [22] and as expected based on isomorph theory [10-12]. 

  In conclusion, a new approach for constructing microscopic force-based theories 

of slow dynamics that explicitly includes attractive forces has been developed at the level 

of pair correlations. Under isochoric conditions, the attractive forces can have a major 

effect on supercooled liquid dynamics but as density increases their influence vanishes. 

Under isobaric conditions, attractive forces are much less important due to thermal 

contraction. Our results are consistent with recent simulations [6-9] and experiments 

[21,23]. The theoretical approach can be applied to more complex soft matter systems. 

For example, colloidal gels where strong and short range attractive forces induce 

transient bonding [3] which is explicitly described at the force level using PDT. Although 

beyond the scope of this Letter, we do find that the essential features of the “re-entrant 

glass melting” phenomenon induced by a short range attraction [3,39,40] is captured by 

the PDT-ECNLE approach, as briefly discussed in the SM. More generally, the new force 

vertex idea can be employed in the dynamic free energy framework previously applied to 

study activated dynamics in glass and gel forming materials composed of nonspherical 

colloids [41,42], polymers [43] and soft repulsive colloids [44].   
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Figures: 

 
 
FIGURE 1. Non-dimensionalized alpha relaxation times for the LJ (orange, solid) and 

WCA (purple, dashed) fluids at two packing fractions as a function of dimensionless 

inverse temperature. For thermal systems, τ 0 ≡ (24ρσ 2 )−1 M / πkBT , where M  is the 

particle mass [30]. The black points denote the predicted emergence of a barrier (ideal 

NMCT crossover), while the green dashed line shows the high temperature Arrhenius 



 

 

16

behavior. (Inset) The average effective attractive (orange, solid) and repulsive (purple, 

dashed) contributions to the force vertex, in arbitrary units, for the same packing 

fractions.    

 

 

FIGURE 2. Collapse of the non-dimensionalized alpha times for the isochoric LJ 

systems at different packing fractions. Temperature is scaled by the apparent Arrhenius 

barrier, E∞ (η). (Inset) βE∞  for LJ (blue, stars) and WCA (red, crosses) fluids (almost 

indistinguishable), compared to the onset temperature kBTonset  (LJ, purple, closed 

squares; WCA, orange, open squares). The black dashed line is the power law 

βE∞ ∝ η 9.3.  
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FIGURE 3. Dimensionless mean alpha times for LJ (solid) and WCA (dashed) fluids as 

function of scaled inverse temperature at reduced pressures (right to left) of 

 .The horizontal line illustrates the kinetic vitrification based on 

τα (Tg ) = 100s  and τ 0 = 0.1ps . (Inset) Model equation of state results (curves; see SM) 

for  (right to left). The black hashed curve shows the fit to simulation data 

[36] of the one-component LJ fluid and should be compared to the  (red) curve.  
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FIGURE 4.  Logarithm of the mean alpha time (in seconds) versus reduced inverse 

temperature for the LJ (orange, solid) and WCA (purple, dashed) fluids at , 

compared to experimental OTP data (green stars) [23]. The theory curves are shifted 

vertically to match the high temperature experimental relaxation times.  (Inset) Collapse 

of the dimensionless alpha times for  (curves) and isochoric 

η = 0.50, 0.52, 0.54, 0.56, 0.58  (points) conditions with the reduced variable . 

The horizontal line has the same meaning as in Figure 3. 


