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We explore prethermal Floquet steady-states and instabilities of the weakly interacting two-
dimensional Bose-Hubbard model subject to periodic driving. We develop a description of the
nonequilibrium dynamics, at arbitrary drive strength and frequency, using a weak-coupling con-
serving approximation. We establish the regimes in which conventional (zero-momentum) and un-
conventional ((π, π)-momentum) condensates are stable on intermediate time scales. We find that
condensate stability is enhanced by increasing the drive strength, because this decreases the band-
width of quasiparticle excitations and thus impedes resonant absorption and heating. Our results
are directly relevant to a number of current experiments with ultracold bosons.

Periodically driven systems[1–4] often exhibit ex-
otic phenomena that are absent in their non-driven
counterparts[5, 6]. Classic examples include the Kapitza
pendulum and the periodically kicked rotor. Recently,
periodically modulating optical lattices has attracted in-
terest as a way of controlling hopping processes[7–13] in
order to engineer gauge fields[14–21], topological band
structures[22–28], and associated exotic states of matter.
Such exotic states are known to exist in noninteracting
systems and in certain mean-field models; the extent to
which they survive in the presence of interactions is a
central open question. It is believed, from the eigenstate
thermalization hypothesis[29–31], that driven interacting
systems will generically heat up to infinite temperature
at sufficiently late times[32–39]. Nevertheless, in some
parameter regimes these heating times will be paramet-
rically slower than the system’s characteristic timescales.
In that case, the system will rapidly approach a “prether-
malized” Floquet steady state[38, 40–42], which governs
the dynamics until the much later heating timescales.

In the present work, we study these prethermal states
in the weakly interacting, two-dimensional, periodically-
driven Bose-Hubbard model (BHM). The regime we ex-
plore is directly relevant to experiments[9, 10, 13, 16–
18, 20, 21, 25], in which weak interactions are present.
We employ a self-consistent weak-coupling conserving ap-
proximation (WCCA) which treats the coupled nonlinear
dynamics of the condensate and the quasiparticle spec-
trum while neglecting collisions between quasiparticles.
This approximation is justified at weak coupling since
nonlinearities are important at much shorter times than
the collisional timescales.

Within the WCCA, we find a phase diagram (Fig. 1)
featuring at low drive frequency a regime in which the
superfluid state is already unstable within Bogoliubov
theory, owing to the resonant creation of quasiparticle
pairs, and a regime (at high drive frequency) where the
superfluid is stable. In the WCCA, there is a sharp

phase transition between these; when effects beyond weak
coupling are included, there will be a qualitative differ-
ence in heating rates. Thus, in the “stable” regions of
Fig. 1, the system initially reaches a prethermalized su-
perfluid state—featuring a nonequilibrium quasiparticle
distribution—and then eventually heats up. For strong
driving, the prethermalized superfluid state is exotic, in-
volving condensation at momentum π = (π, π). The
existence of this exotic phase in the high-frequency limit
has previously been established[7, 8, 10]; we find that it
persists for intermediate frequencies as well.

Remarkably, we find that the stable phase is enhanced
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FIG. 1: (Color online) Stability diagram of the driven BHM
for U/J0 = 0.2. In the pink regions the condensate is unsta-
ble as the drive parametrically excites pairs of quasiparticles.
In contrast, in the blue regions the condensate is stable on
intermediate time scales. In the grey shaded region around
ζ ≈ 2.405 the system is strongly correlated (see text). The
symbols represent numerical WCCA results; the boundaries
are given by the analytical expression Eq. (5). Points marked
(a), (b), (c) correspond to the panels in Fig. 3.
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for intermediate drive strengths, since the drive both cre-
ates quasiparticle pairs when this is a resonant process,
and decreases the effective hopping rate and thus the
effective bandwidth of quasiparticle excitations. A key
conclusion of our work is that, for weak interactions but
general drive amplitude and frequency, the condensate
becomes unstable when the drive frequency is parametri-
cally resonant with the drive-renormalized time-averaged
bandwidth. Therefore, parametric resonance occurs at
lower frequencies when the drive strength is ramped up.

Model.—We consider the Bose-Hubbard model on a
square lattice in the presence of a circularly-polarised
time-periodic force E(t) = A (cos Ωt, sin Ωt)

T
:

Hlab(t)=−J0

∑
〈ij〉

b†i bj+
∑
j

[
U

2
nj(nj−1)+E(t)·rjnj

]
. (1)

The operator b†j creates a boson on lattice site rj . The
tunnelling and interaction strength are denoted by J0 and
U , respectively. To achieve non-trivial dynamics in the
high-frequency regime, we scale the driving amplitude
linearly with the driving frequency A ∼ Ω.[6]; we define
ζ ≡ A/Ω. We transform this Hamiltonian into a rotating
frame (cf. supplementary material[75]), giving:

H(t)=−J0

∑
〈ij〉

eiA(t)·(ri−rj)b†i bj +
U

2

∑
j

nj(nj − 1). (2)

Thus, in the rotating frame, the system experiences
an effective time-dependent gauge potential A(t) =

ζ (sin Ωt,− cos Ωt)
T

. The time-evolution of U(1)-
invariant quantities (and thus the stability) remains the
same in both frames[43].

Method. To study the driven system at arbitrary fre-
quencies, we employ a self-consistent, weak-coupling con-
serving approximation (WCCA). The WCCA involves
deriving equations of motion from a two-particle irre-
ducible effective action[44] within the nonequilibrium
Schwinger-Keldysh formalism[45, 46], keeping only di-
agrams to first order in U (see [75]). Unlike simple
perturbation theory or Bogoliubov theory, the WCCA
respects unitarity and conservation laws[47], and thus
gives physically sensible results for all times; in partic-
ular, it allows the exponential growth of unstable modes
to be cut off by the resulting depletion of the conden-
sate. While the WCCA is not guaranteed to yield a
gapless excitation spectrum[47, 48], the low-frequency
behavior of the spectrum is irrelevant for the phenom-
ena discussed here. Our approach is equivalent to a fully
self-consistent, time-dependent Hartree-Fock-Bogoliubov
(HFB) approximation[48, 49]; our formulation, however,
can more readily be extended to higher orders in U .

The WCCA equations of motion[75] were solved nu-
merically. For the results presented here, we prepared
the system on a Ns = 100 × 100 lattice in the ground
state of Bogoliubov theory. We allow for a macroscopic
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FIG. 2: (Color online). (a) Time evolution of the condensate
fraction for 801 driving cycles, starting from a Bogoliubov ini-
tial state localised at k = 0 for U/J0 = 0.2. (b) Decay rate to
75% of the condensate curves for Ω/J0 = 12 (bold-face points
in Fig. 1). Errorbars are set by the difference of the inverse
times, determined by the first and last time the curve passes
through 3/4 taking into account for the oscillatory behaviour.

population of the k = π mode to allow for a condensate
at momentum π. To study the nonequilibrium dynam-
ics, we abruptly turn on the periodic drive and propagate
the initial state for 801 driving cycles using Eqs. (15) and
(16) of[75]. We checked that the results are insensitive
to system size.

Stability diagram.—The stability phase diagram is
shown in Fig. 1. Previous work has investigated
the driven Bose-Hubbard model[50–57] and related
models[58–66] using various approximation schemes; we
go beyond these works by treating both the condensate
and quasiparticle sectors, including the feedback between
them. Thus, we are able to explore instabilities originat-
ing in either sector on equal footing.

We first discuss two analytically tractable limits, cor-
responding to high-frequency driving (i.e., going along
the x axis of Fig. 1) and to low-amplitude driving (i.e.,
going along the y axis). In the first case, the dynamics
is approximately governed by an effective time-average
Hamiltonian[5, 6]:

Have = −Jave(ζ)
∑
〈ij〉

b†i bj +
U

2

∑
j

nj(nj − 1). (3)
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The periodic modulation renormalizes the hopping to
Jave(ζ) = J0J0(ζ), where J0(ζ) is the zeroth-order Bessel
function of the first kind, which is a damped oscilla-
tory function with the first zero at ζ ≈ 2.4, the sec-
ond at ζ ≈ 5.5, etc. Thus, as ζ is increased, the time-
averaged hopping decreases, until the dispersion flattens
at ζ ≈ 2.4. For ζ > 2.4 the dispersion flips sign, and
acquires a stable minimum at π = (π, π). Thus, in the
high-frequency limit the condensate at 0 = (0, 0) is stable
when ζ < 2.4, whereas the condensate at π is stable when
2.4 . ζ . 5.5. Moreover, for commensurate filling, the
superfluid phase should transition into a Mott insulating
state around ζ = 2.4 determined by the phase boundary
Jave(ζ)/U . 0.06.[67, 68] This transition regime, marked
by the thin vertical strip in Fig. 1, is beyond the validity
of the WCCA; our WCCA simulations in this regime give
oscillatory behavior, see [75].

A second analytically tractable limit is that of weak
driving, at arbitrary Ω. The dominant effects can be
inferred from linear stability analysis around the non-
driven state. In terms of Bogoliubov quasiparticle op-
erators γk, the system-drive coupling includes terms of
the form eiΩtγ†kγ

†
−k, involving the emission of pairs of

quasiparticles from the condensate. The emission rate
is related to the density of states of two-quasiparticle
excitations at Ω. Specifically, if the non-driven system
has quasiparticle excitations at energy Ek, E−k such that
Ω = Ek + E−k, absorption will occur and the system
will be unstable. On the other hand, if Ω ≥ 2W , where
W ≈ 2zJ0 is the approximate bandwidth of Bogoliubov
excitations, then absorption does not occur and the sys-
tem is stable.

Combining the insights from these two limits al-
lows us to understand the entire stability phase dia-
gram. The drive creates pairs of renormalized Bogoli-
ubov quasiparticles, which have an effective bandwidth
Wave ≈ 2zJave(ζ). We define Wave ≡ maxk(Eave(k)) −
mink(Eave(k)) as the time-averaged Floquet-Bogoliubov
bandwidth; in terms of this, the stability condition reads

Ωc > 2Wave ⇔ stable. (4)

Equation (4) is consistent with our numerical re-
sults (Fig. 1). This result is unexpected—since the
time-averaged Hamiltonian is valid at infinite fre-
quency whereas parametric resonance is a low-frequency
phenomenon— but can be understood as follows. The
hopping matrix element in the driven system can be ex-
panded as J(t) ∼ J0

∑
n Jn(ζ) exp(inΩt). We absorb

the time-independent n = 0 component in the unper-
turbed Hamiltonian, and treat the n = 1 term, which
oscillates at Ω, perturbatively. The perturbation is small
for U � Ω, because the matrix element for creating
two quasiparticles is proportional to both J1(ζ) [which
need not be small] and U [which is assumed to be small].
We then use parametric instability analysis[75] with the
renormalized dispersion, and conclude that an instability

occurs when Ω = 2Wave. When Ω/J0 � 1, the critical
driving frequency is given by

Ωc(ζ) = 4
√
zJave(ζ)(zJave(ζ) + n0U). (5)

Note that in the present case, resonant absorption occurs
for drive strengths up to twice the single-particle band-
width; by contrast, in noninteracting systems, no absorp-
tion occurs for Ω > Wave. The presence of absorption
at frequencies exceeding the single-particle bandwidth is
generic in interacting systems.

Condensate evolution.—Figure 2 [panel (a)] shows the
evolution of the condensate fraction in various regimes:
in the parametrically unstable regime (solid blue line),
the condensate slowly decays; in the stable regime
(dashed red line), it saturates to a prethermalized value,
which is generally lower than the Bogoliubov value (since
|Jave(ζ)| < |J0|). The system enters a steady-state with
constant in time evolution when measured stroboscopi-
cally. When the initial condensate is at the band max-
imum (dash-dotted black line), the condensate decays
rapidly. Panel (b) shows the decay rate as a func-
tion of drive amplitude in the parametrically unstable
regime: note that the decay rate depends not only on
drive strength ζ, but also on U and Ω. Very close to
the region ζ ∼ 2.405 (grey strip in Fig. 1), the WCCA
gives strong oscillations of the particle density between
the condensates at 0 and π (see [75]); however, as previ-
ously noted, the WCCA is not reliable here.

A natural further observable is the total energy of the
system, which grows in the unstable phases and saturates
in the stable phases (see [75]).

(Quasi-)momentum distribution.—Fig. 3 plots snap-
shots of the quasimomentum (i.e., lattice momentum)
distribution; the time evolution of this quantity is shown
in[75]. Specifically, the quantity plotted is nk = 〈b†kbk〉−
n0, i.e., the condensate peak is subtracted. The quasi-
momentum distribution can be directly accessed through
band-mapping followed by time-of-flight imaging. More-
over, as we are concerned with a single-band model, one
can extract this distribution directly from time-of-flight
imaging, by focusing on momenta within the first Bril-
louin zone.

Figure 3 (a) shows the parametrically unstable case,
where quasiparticles are strongly excited around the
quasimomentum surface {k : Ω = 2Eave(k)} matching
the resonance condition. Within Bogoliubov theory, the
(time-averaged) excitation intensity should be uniform
along this surface. However, as the points along this
surface are not symmetry-related, the nonlinearities in-
cluded in the WCCA favor some points on the excitation
surface, as seen in the intensity pattern in Fig. 3 (a).

Figure 3 (b) shows the stable case. Here, by contrast
with panel (a), the quasiparticle population remains low
throughout the Brillouin zone. As expected from Bo-
goliubov theory, bosonic modes satisfying Jave(k) . U
should have appreciable occupation in the steady state;
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FIG. 3: (Color online). Snapshot of the momentum distribution nk = 〈b†kbk〉 − n0 after 801 driving cycles starting from a
Bogoliubov initial state localised at k = 0 for U/J0 = 0.2. Panel (a) is in the unstable regime where the condensate is depleted
due to parametric resonance. The bosons are excited by the drive to the quasienergy surface Ω = 2Eave(k) (bright yellow-white
circle around k = π) where they occupy sharp peaks (white pixels). Panel (b) is in the regime where the condensate is stable on
the pre-thermal timescales. In panel (c), the system is dynamically unstable due to the dispersion being inverted. The bright
disc of excitations around k = 0 corresponds to dynamically unstable modes. The parameters are (a) Ω/J0 = 10, ζ = 0.8, (b)
Ω/J0 = 18, ζ = 2.2, and (c) Ω/J0 = 20, ζ = 3.8.

this region expands as the dispersion flattens. The intri-
cate patterns in momentum space are due to the abrupt
turn-on of the drive—which initializes the Floquet-
Bogoliubov quasiparticle states out of equilibrium—and
are absent when the drive is instead gradually ramped up.
These patterns evolve nontrivially with time (see [75]).

Finally, Fig. 3 (c) illustrates the case in which the ini-
tial state is a condensate at k = 0, but the dispersion
is inverted (ζ > 2.4) so that the only stable conden-
sate is supported at k = π. Thus the initial state is
unstable regardless of Ω. Let us consider the infinite-
frequency limit; which amounts to a sudden quench of
the single-particle dispersion. Computing the Bogoli-
ubov spectrum around a condensate at k = 0 in an
inverted dispersion, we find that modes with momenta
near k = 0 acquire imaginary frequencies (and thus
grow exponentially), whereas modes with large momenta
are stable [80]. The unstable modes are determined by
the condition εave(k) + zJ0 < 2n0U , where εave(k) is
the single-particle Floquet dispersion (3). These modes
are dynamically stabilized due to the nonlinear feedback
of the self-consistent treatment[46]. Our numerical re-
sults with the WCCA confirm this picture: the unstable
modes at small quasimomenta acquire large populations,
whereas the large-quasimomentum modes do not. This
behavior is specific to the WCCA; in a real system it will
correspond to intermediate-time dynamics t . J0/U

2.
On longer times, collisions between quasiparticles should
cause large occupation numbers across the Brillouin zone,
see [75].

Discussion.—We briefly outline the validity of the
WCCA in the three regimes of interest (for details
see [75]). In the parametrically unstable regime, the sta-
bility analysis suggests that unstable modes grow at the
rate Γ ∼ Un0J0J1(ζ)/Wave, while the momentum arcs in
Fig. 2 (a) decay at a Golden Rule rate ∼ U2n0nk/Wave.

Hence, as long as Unk < J0J1(ζ), the formation rate
is greater than the decay rate and the WCCA is reli-
able. In the stable region, the condensate fraction n0 re-
mains large, and the WCCA remains valid, until very late
times, when resonant absorption involving m = Ω/Wave

quasiparticles becomes dominant. For large Ω, this is a
very high-order and therefore very slow process. Finally,
in the dynamically unstable phase, the WCCA physics
is valid up to times Wave/U

2 (the collisional timescale).
Thus, at weak coupling, there is a parametrically large
window between 1/U and Wave/U

2 where the WCCA
description is correct.

The main experimental prediction of this work—a
parametric change in heating rates as a function of
drive amplitude and frequency—can be measured in
present-day experiments, which are naturally in the
weak-coupling regime. For the experiment in Ref. 25 the
parameters were chosen as U/J0 ≈ 0.1, Ω/J0 ≈ 20, and
ζ ≈ 0.6, which is within the regime we considered. For
realistic experiments in optical lattices, the presence of
higher bands can lead to instability even at high drive
frequencies Ω. In this case there are three regimes: (i)
if Ω is less than twice the renormalized bandwidth Wave

of the lower band, the system is parametrically unsta-
ble as discussed above; (ii) if Ω is larger than 2Wave,
smaller than the band gap to the upper band, and fur-
thermore chosen such that any n-photon resonances to
higher bands [70] are suppressed, then the system is sta-
ble within WCCA. (iii) if Ω exceeds the band gap, the
drive can mediate interband transitions, leading to in-
stability again. For a square optical lattice with typical
lattice potential Vlatt = 10Erecoil, Erecoil = h× 4kHz, the
bandwidth of the lowest band is W0 = 4J0 = h× 0.3kHz
[the time-averaged bandwidth Wave is reduced by a fac-
tor of J0(ζ)], and the gap to the second Bloch band is
∆ = 4.57Erecoil = h× 18.28kHz.
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Although we focused on a square lattice, the argu-
ments generalize to other lattices, such as the honey-
comb lattice, in which topologically non-trivial states ex-
ist. Note that topological gaps in mechanically shaken
optical lattices scale as Ω−1[22–24]. Hence, in order to
engineer topological insulators with large gaps (and a
large region of non-zero Berry curvature around them),
it is desirable to go to lower frequencies. Our results im-
pose a fundamental limit for weakly-interacting bosonic
systems on how small the frequency can be, since for
Ω < 2Wave the system becomes unstable. More gener-
ally, our results suggest that conserving approximations,
whether controlled by weak coupling or some other pa-
rameter as in large-N models[46, 71–74], are ways of ex-
ploring dynamical phase transitions in models that are
both interacting (unlike free-particle models) and finite-
dimensional (unlike the Kapitza pendulum). The critical
properties of such transitions are a fruitful theme for fu-
ture work. Although in practice such phase transitions
will be smeared out by higher-order effects, the associated
crossovers should still be experimentally observable.
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