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We derive shape-independent limits to the spectral radiative heat-transfer rate between two closely spaced
bodies, generalizing the concept of a black body to the case of near-field energy transfer. Through conservation
of energy and reciprocity, we show that each body of susceptibility χ can emit and absorb radiation at enhanced
rates bounded by |χ|2/ Imχ, optimally mediated by near-field photon transfer proportional to 1/d2 across a
separation distance d. Dipole–dipole and dipole–plate structures approach restricted versions of the limit, but
common large-area structures do not exhibit the material enhancement factor and thus fall short of the general
limit. By contrast, we find that particle arrays interacting in an idealized Born approximation (i.e., neglecting
multiple scattering) exhibit both enhancement factors, suggesting the possibility of orders-of-magnitude im-
provement beyond previous designs and the potential for radiative heat transfer to be comparable to conductive
heat transfer through air at room temperature, and significantly greater at higher temperatures.

Heat exchange mediated by photons, or radiative heat trans-
fer, can be dramatically modified for bodies separated by
small gaps [1–7]. We exploit energy-conservation and reci-
procity principles to derive fundamental limits to the near-
field spectral heat flux between closely spaced bodies of ar-
bitrary shape, given only their material susceptibilities χ(ω)
and their separation distance d. Our approach enables us to
define optimal absorbers and emitters in the near field, which
contrast sharply with far-field black bodies: their response is
bounded by the amplitude of their volume polarization cur-
rents, rather than their surface absorptivities, and maximum
energy transfer requires coordinated design of the two bod-
ies (whereas the far-field limit derives from the properties
of a single black body). These distinguishing characteris-
tics lead to two possible enhancements relative to black-body
emission: a material enhancement factor |χ(ω)|2/ Imχ(ω)
that represents the maximum absorber and emitter polar-
ization currents, and a near-field enhancement factor 1/d2

that represents maximum interaction between currents in free
space. We show that restricted versions of our limits can
be approached for sphere–sphere and sphere–plate configu-
rations. For two extended structures, however, common pla-
nar geometries—including bulk metals [8–17], metamateri-
als [18–24], and thin films [25–31]—exhibit flux rates orders
of magnitude short of the limits because they do not satisfy
the optimal-absorber condition. Instead, we find that idealized
plasmonic-particle arrays, interacting within a Born approxi-
mation with negligible multiple scattering, approach the limits
at selected frequencies, and that the possibility of reaching the
limits, even over a narrow bandwidth (a desirable feature for
thermophotovoltaics [7, 32–35]), would represent an orders-
of-magnitude improvement over current designs.

A ray-optical black body absorbs every photon incident
upon its surface, which by reciprocity (Kirchoff’s Law) yields
its emissivity and the black-body limit to thermal radia-
tion [36]. At wavelength and subwavelength scales, nanos-
tructures can exhibit optical cross-sections much larger than
their physical cross-sections [37], making it difficult even to
define quantities like emissivity. A further difficulty in the
near field is the presence of evanescent waves, which can in-

crease transmitted power but only through interference with
reflected waves [38]. Although the possibility of enhancement
beyond the blackbody limit was realized by Rytov, Polder, and
others in the 1950s [1, 2], efforts to find underlying limits have
been restricted to planar structures with translation symmetry
(including metamaterials), without consideration of material
loss [10, 15–17, 21, 30]. Spherical-harmonic [39, 40] and
Green’s-function [41] limits are difficult to apply in the near
field where a large but unknown number of spherical harmon-
ics can be excited by general shapes [42].

Without reference to particular structures or symmetries,
assuming only linear electromagnetism, we translate the reci-
procity principle to the near field by applying it to polarization
currents within the bodies. Dipoles in vacuum exchange en-
ergy at a rate limited by the energy density of an outgoing free-
space wave [43]. As we show below, the maximum energy
transfer between material bodies occurs when the currents
within the bodies couple individually at the dipole–dipole
limit, amplified by material enhancement factors. These con-
ditions allow for much greater heat transfer than has previ-
ously been shown possible.

Radiative heat exchange is depicted schematically in
Fig. 1(a): fluctuating currents arise in body 1 at temperature
T1, and transfer energy to body 2 at a rate of [4]

H1→2 =

∫ ∞
0

Φ(ω) [Θ(ω, T1)−Θ(ω, T2)] dω, (1)

where Φ(ω) is a temperature-independent energy flux and Θ
is the Planck spectrum. Φ(ω) is the designable quantity of
interest, to be tailored as a function of frequency depending
on the application and available materials.

Limits—The spectral heat flux Φ(ω) is the power absorbed
in body 2 from fluctuating sources in body 1 (or vice versa). In
recent work [42] we have bounded the scattering properties of
any dissipative medium excited by a known, externally gener-
ated incident field. The bounds arise from the functional de-
pendencies of power expressions with respect to induced cur-
rents: absorption is a quadratic functional, whereas extinction
(absorption+scattering), given by the optical theorem [44–47],
is only a linear functional. Energy conservation requires that
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FIG. 1. (a) Radiative heat transfer: Fluctuating currents in an emitter (body 1, susceptibility χ1) generate a field Einc,1 and transfer energy to
an absorber (body 2, susceptibility χ2) at a rate Pabs,2. (b) Energy conservation bounds Pabs,2 in terms of Einc,1, and a resonant enhancement
factor |χ2|2/ Imχ2. (c) The sources and “receivers” can be exchanged by reciprocity, whereupon (d) absorption in body 1 is bounded, yielding
a spectral-flux limit determined by χ1, χ2, and the free-space GF G0. For near-field transfer the GF integral is ∼ 1/d2, for separation d.

extinction be greater than absorption, which imposes a bound
on the magnitude of the excited currents. Radiative heat trans-
fer, however, involves sources within one of the scatterers,
preventing a simple optical theorem.

To circumvent this issue we reframe the scattering prob-
lem (without approximation). We define the “incident” field
to be the unknown field emanating from body 1, and the
“scattered” field to arise only with the introduction of body
2. For a Green’s function (GF) G1 that is the field of dipole
in the presence of body 1, the fields are given by a standard
integral-equation separation [48], Einc,1 = (i/ε0ω)

∫
V1
G1J

and Escat,1 =
∫
V2
G1P, where J are the stochastic source cur-

rents in body 1, P is the polarization field induced in body 2,
and ε0 is the vacuum permittivity. This decomposition permits
an optimal theorem with respect to body 2, such that its extinc-
tion is proportional to Im

∫
V2

Einc,1 ·P (its absorption [44] is

proportional to
∫
V2
|P|2). The energy-conservation arguments

from above imply that absorption in body 2 is bounded,

Pabs,2 ≤
ε0ω

2

|χ2(ω)|2

Imχ2(ω)

∫
V2

|Einc,1(x2)|2, (2)

which is formally derived by variational calculus [42]. To
achieve this limit, the optimal polarization field must be pro-
portional to the incident field, P ∼ Einc,1, to maximize the
extinction overlap integral. In the near field, where source
fields rapidly decay, negative-permittivity metals that support
surface-plasmon modes can achieve this condition, as we will
demonstrate.

The limit in Eq. (2) reduces the optimal-flux prob-
lem to a question of how large the emitted field
Einc,1 can be in V2. Inserting Einc,1 into Eq. (2)
yields an integral of the stochastic currents, which is
determined by the fluctuation-dissipation theorem [4],〈
Jj(x, ω), Jk(x′, ω)

〉
= 4ε0ωΘ(ω, T1) Im [χ (ω)] δjkδ(x −

x′)/π, such that the ensemble-averaged emitted field at x2 in
V2 is

〈
|Einc,1(x2)|2

〉
= 4ε0ωΘ (Imχ1)

∫
V1
‖G1(x2,x1)‖2F ,

where ‖·‖F denotes the Frobenius norm [49]. By reci-
procity [50] one can exchange the positions in the integrand,

x1 ↔ x2 (while transposing the GF, but the transpose does
not affect the norm), such that emission from V1 is equivalent
to absorption for free-space sources in V2, as in Fig. 1(c). Ab-
sorption is bounded by energy conservation [42], limiting the
emitted-field magnitude:〈
|Einc,1(x2)|2

〉
≤ 4ε0ωΘ

|χ1|2

Imχ1

∫
V1

‖G0(x1,x2)‖2F (3)

whereG0 is the free-space GF, cf. Fig. 1(d). Inserting Eq. (3)
into Eq. (2) and separating the Planck spectrum by Eq. (1), the
maximum flux between two bodies is

Φ(ω) ≤ 2

π

|χ1(ω)|2

Imχ1(ω)

|χ2(ω)|2

Imχ2(ω)

∫
V1

∫
V2

‖G0(x1,x2)‖2F .

(4)

The limit of Eq. (4) can be further simplified. In the near field,
G0 is ideally dominated by the quasistatic term∼ 1/r3, which
is primarily responsible for the evanescent waves that en-
able greater-than-black-body heat-transfer rates [4, 7]. Drop-
ping higher-order terms (further discussed in [51]), we bound
Eq. (4) by integrating over the infinite half-spaces contain-
ing V1 and V2, assuming a separating plane between the two
bodies. (If not, e.g. between two curved surfaces, only
the coefficients change.) For bodies separated by a distance
d, the integral over the (infinite) area A is given by [51]∫
V1,V2

‖G0‖2F = A/32πd2, yielding flux limits per area or
relative to a black body with flux ΦBB = k2A/4π2 [4]:

Φ(ω)

A
≤ 1

16π2d2

|χ1(ω)|2

Imχ1(ω)

|χ2(ω)|2

Imχ2(ω)
. (5)

Φ(ω)

ΦBB(ω)
≤ 1

4(kd)2

|χ1(ω)|2

Imχ1(ω)

|χ2(ω)|2

Imχ2(ω)
. (6)

Eqs. (4–6) are fundamental limits to the near-field spec-
tral heat flux between two bodies and form the central re-
sults of this Letter. They arise from basic limitations to the
currents that can be excited in dissipative media, and their
derivations further suggest physical characteristics of the op-
timal response in near-field heat transfer: an optimal emitter
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enhances and absorbs near-field waves from reciprocal exter-
nal sources in the absence of the absorber whereas an opti-
mal absorber enhances and absorbs near-field waves from the
emitter, in the presence of the emitter. These principles can
be understood by working backwards through Fig. 1. The
optimal-emitter condition identifies the largest field that can
be generated in an exterior volume (V2) by considering the
reciprocal absorption problem, per Fig. 1(c). Reinserting the
absorber, cf. Fig. 1(b), should not reflect the emitted field
but rather enhance and absorb it. Because heat flux is sym-
metric with respect to absorber–emitter exchange, both bod-
ies should satisfy each condition (induced currents propor-
tional to source fields). Eq. (4) can be interpreted as sources
throughout the emitter generating free-space dipolar fieldsG0

enhanced by |χ1|2 / Imχ1, which are further enhanced by
|χ2|2 / Imχ2 and absorbed. The dipole–dipole interactions
are bounded by their separation distance [43, 52], leading to
simple shape-independent limits in Eqs. (4–6). Ideal struc-
tures that achieve these limits can have significantly greater
heat transfer than black bodies, even if their spectral flux has
a narrow bandwidth. Whereas the heat transfer between black
bodies in the far field is H/A = σSBT

4, where σSB is the
Stefan–Boltzmann constant [36], a straightforward calcula-
tion citeNote1 shows that ideal near-field heat exchange over
a narrow bandwidth ∆ω/ω = Imχ/|χ|, typical of plasmonic
systems [53, 54], can achieve per-area transfer rates of

H

A
≈ σSBT

4 2

7(kd)2

|χ|3

Imχ
, (7)

exhibiting both distance and material enhancements relative
to the Stefan–Boltzmann rate.

The limits generalize [51] to local media with ten-
sor susceptitbilities via the replacement |χ|2/ Imχ →∥∥∥χ (Imχ)

−1
χ†
∥∥∥

2
. Nonlocal effects, which appear below

10nm length scales [55] and which regularize the 1/d2 diver-
gence [4], are outside the scope of these limits, but we believe
that a generalization to nonlocal χ is possible and have pre-
liminary results [56] suggesting that “hydrodynamic” [57, 58]
nonlocal materials cannot not surpass the local-χ bounds.

Dipolar Interactions—If one of the bodies is small enough
for its response to be dipolar, the optimal-absorber and
optimal-emitter conditions converge: the polarization currents
induced in each structure by free-space dipoles in place of the
opposite structure must be proportional to the incident fields.
This condition is satisfied for two-dipole transfer, and the en-
hancement of the emitted and absorbed fields is possible via
“plasmonic” resonances in metallic nanoparticles. For two
identical particles with volumes V , tip-to-center-of-mass dis-
tances r, and tip-to-tip separation d, Eq. (4) limits the flux:

[Φ(ω)]dipole–dipole ≤
3

4π3

|χ1(ω)|2

Imχ1(ω)

|χ2(ω)|2

Imχ2(ω)

V 2

(2r + d)
6 . (8)

The radiative flux between quasistatic metal spheres is known
analytically [4] and peaks at the limit given by Eq. (8).
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FIG. 2. Comparison of heat flux in sphere–sphere and sphere–plate
structures to the analytical limits of Eqs. (8,9). Two Drude metal
spheres (orange circles, fit to a solid line) approach the dipole–dipole
limit (dashed orange) at their resonant frequency, ωres ≈ ωp/

√
3. A

sphere and a plate (blue circles) approach within a factor of two of
the limit between dipolar and extended objects (dashed blue), if the
material resonance of the plate is slightly modified (see text). In each
case the separation is d = 0.1c/ωres, with sphere radii r = d/5. The
flux rates exhibit the material enhancement factor |χ|4/(Imχ)2, but
not the near-field enhancement factor, due to the lack of large-area
interactions. The sphere area A is taken to be the cross-section πr2.

Heat transfer between a dipole and an extended structure
is limited by integrating over the half-space occupied by any
extended structure, yielding a maximum flux

[Φ(ω)]dipole-to-ext ≤
1

8π2

|χ1(ω)|2

Imχ1(ω)

|χ2(ω)|2

Imχ2(ω)

V

(r + d)3
, (9)

where r+d is the distance between the extended structure and
the particle’s center. Heat flux between a sphere and a bulk
metal, each supporting a plasmonic mode, can achieve half of
the maximum flux [4, 51, 59] if the resonances align. This
geometry falls short by a factor of two because planar surface
plasmons exist only for TM polarization [60], and thus the pla-
nar structure reflects near-field TE-polarized light emitted by
the sphere. Neither structure exhibits the 1/d2 enhancement
factor, which for dipolar coupling (∼ 1/d6) requires interac-
tions over two extended areas.

Fig. 2 compares flux rates for sphere–sphere (orange cir-
cles) and sphere–plate (blue circles) geometries, computed
by the fluctuating-surface current method [61–63], to the
limits of Eqs. (8,9) (orange and blue dashed lines, resp.).
The spheres are modeled by Drude susceptibilities [44] with
plasma frequency ωp and loss rate γ = 0.1ωp. The “plate” is
simulated by a very large ellipsoid (volume ≈ 7000× larger
than the sphere) comprising a material with a modified plasma
frequency, ωp,pl =

√
2/3ωp, and a modified loss rate, γpl =

2γ/3, to align the resonant frequencies of the sphere and plate
without modifying the flux limit. In each case the separation
distance d = 0.1c/ωres and the sphere radii are r = d/5.



4

extended-structure 
                   limit

extended-structure 
         limit

blackbody blackbody

H
ea

t f
lu

x,
 Φ

(ω
) 

c2 
/ω

p2 A

10-3

100

103

106

Material loss, γ / ωp

10-4 10-3 10-2 10-1 100

10-3

100

103

106

109

0.2 0.4 0.6 0.8

~ 1/γ2

~ ln (1/γ)

~ 1

~ γ

(b)(a)

γ = 0.01ωp ω = 0.4ωp

104

(c)

h 
(W

/m
2 K

)

300K

700K

1500K

0.10.01101

104

107

H
ea

t t
ra

ns
fe

r 
co

ef
f,

 h
 (

W
/m

2 K
)

20

limit
plates

separation, d = 30nm

Resonance wavelength, λ (μm)
151050

105

106

107

103 d (μm)

1010

hcond

cond

10.001

Frequency, ω / ωp

FIG. 3. (a,b) Comparison of heat flux between mirror images of large-area Drude-metal structures separated by d = 0.1c/ωp. (a) Structures
optimized for maximum flux at three frequencies, ω = (0.2, 0.4, 1/

√
2)ωp, for a material loss rate γ = 0.01ωp. Thin films (purple),

hyperbolic metamaterials (blue), and elliptical metamaterials (orange) exceed black-body enhancements but fall far short of the limit (black)
from Eq. (5). The dashed silver line represents the heat transfer for an idealized plasmonic-particle array without multiple scattering. (b)
Optimized structures as a function of loss rate, for ω = 0.4ωp. Each structure exhibits the 1/d2 near-field enhancement factor, but only the
idealized particle array exhibits the |χ|4/(Imχ)2 ∼ 1/γ2 material enhancement factor. (c) Frequency-integrated heat transfer coefficient of a
structure that reaches the single-frequency limit in Eq. (5) over a narrow bandwidth ∆ω ∝ γ. Radiative heat exchange in this limit shows the
possibility of surpassing conductive heat transfer through air (dotted) at T = 300K (gold), which is not possible for plate–plate configurations
(inset, dashed), and of significant further enhancements at higher temperatures (blue, purple).

The computations support the analytical result that the dipolar
limits can be approached to within at least a factor of two.

Extended Structures—For extended structures that do not
behave like single dipoles, the optimal-absorber constraint is
more demanding in that the absorber should enhance the emit-
ted field while accounting for interactions between the two
bodies. We will show that common planar structures do not
exhibit this behavior but that nanostructured media offer the
possibility of approaching it.

Bulk metals (negative-permittivity materials) support sur-
face plasmons that enable greater-than-blackbody heat flux at
their resonant frequency. Individually, a single metal inter-
face nearly satisfies the optimal-emitter condition, emitting
near-field waves over a broad bandwidth of surface-parallel
wavevectors (which enabled the nearly optimal sphere–plate
transfer above). However, when a second metal is brought
close to the first, it reflects most of the incident field, ex-
cept over a narrow wavevector-bandwidth, due to multiple-
scattering effects between the bodies. The failure of the
two-metal geometry to achieve the optimal-absorber condi-
tion leads to a peak spectral heat flux, at the surface-plasmon
frequency ωsp, of approximately citeNote1[

Φ(ωsp)

A

]
plate-to-plate

=
1

4π2d2
ln

[
|χ|4

4(Imχ)2

]
(10)

which is significantly smaller than the limit in Eq. (5) due to
the weak, logarithmic material enhancement. Eq. (10) appears
to be new and is a significantly better approximation than pla-
nar bounds that do not account for material loss [10, 16], as
discussed in the SM citeNote1. The shortcomings of the bulk-
metal interactions cannot be overcome with simple metamate-
rial or thin-film geometries. The flux rate between hyperbolic
metamaterials (HMMs) is material-independent [21, 51]. Op-
timal thin films behave similarly to HMMs [31], thereby also

falling short of the limits. “Elliptical” metamaterials, with
nearly isotropic effective permittivities, exhibit resonances for
χeff ≈ −2 and thus transfer heat at a rate similar to Eq. (10),
limited by the same interference effects discussed above, and
because |χeff |4 � |χ|4.

Fig. 3(a,b) demonstrates the shortcomings of such struc-
tures, showing the computed heat flux between mirror im-
ages of thin-film (purple), hyperbolic-metamaterial (blue),
and elliptical-metamaterial (orange) structures, as a function
of (a) frequency and (b) material-loss rate, for a fixed sep-
aration d = 0.1c/ωp. Assuming smooth surfaces without
roughness, the structural parameters are computationally op-
timized citeNote1 using a derivative-free local optimization
algorithm [64, 65]. Fig. 3(b) shows that the sub-optimal
performance can be attributed primarily to the fact that the
structures do not exhibit the material enhancement factor
|χ|4/ (Imχ)

2 ∼ 1/γ2, as predicted by Eq. (10) and due to
the significant reflections in such geometries.

The spectral heat flux of the limit in Eq. (4) can be inter-
preted as the exchange of enhanced free-space dipole fields,
as discussed above. Guided by this intuition, we include
in Fig. 3(a,b) the heat flux between close-packed arrays of
oblate disk ellipsoids (dashed silver lines), small enough to
be dipolar. We idealize their response as the additive sum of
Eq. (8) over a lattice neglecting multiple scattering (i.e. in a
Born approximation) [66] and accounting for the polarization-
dependence of non-spherical ellipsoids [37]. This structure
combines the individual-particle interactions that exhibit the
material enhancement (which planar bodies do not) with the
large-area interactions that exhibit 1/d2 near-field enhance-
ment (which isolated bodies do not). Fig. 3(a,b) suggest the
possibility for two to three orders of magnitude enhancement
by periodic structuring and tailored local interactions.

Experimental measurements of radiative heat transfer are
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done in vacuum [6, 12, 13] because radiative transfer is domi-
nated by conductive transfer through an air gap. Achieving the
limits presented here, even over a narrow bandwidth, could
transform this landscape. Fig. 3(c) shows the heat-transfer
coefficient h =

∫
Φ(∂Θ/∂T )dω for extended Drude-metal

structure with loss rates γ = 0.01ωp (appropriate e.g. for
Ag and Au [67]). For Lorentzian-shaped energy transfer with
tunable center frequency ωres = ωp/

√
2, peaked at the limit

given by Eq. (5), with a bandwidth ∆ω = γ [51, 53, 54], ra-
diative transfer can surpass conductive (thermal conductivity
κair = 0.026W/m·K [68]) even at T = 300K. In the inset
we fix the wavelengths at λ = 7.6µm for T = 300K and
λ = 3µm for T = 1500K, and plot h as a function of distance
for plate–plate (dashed) and optimal (solid) transfer. We find
that radiative transfer can surpass conductive at separation of
d = 50nm at 300K and almost d = 0.5µm at T = 1500K,
gap sizes that are readily achievable in experiments.

Radiative heat transfer at the nanoscale is a nascent but
growing field. Calculations have primarily been for dipo-
lar [5, 10, 59] or highly symmetric bodies [8–14, 18–23, 25–
31, 69–71], with computational study of more complex ge-
ometries possible only recently [35, 62, 63, 72–74]. We have
show that, guided by the physical principles presented here, a
targeted search through the mostly uncharted near-field design
space offers the prospect of orders-of-magnitude enhance-
ments in radiative energy transfer.
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[9] J. B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson,
Journal of Applied Physics 76, 7209 (1994).

[10] J. B. Pendry, Journal of Physics: Condensed Matter 11, 6621

(1999).
[11] C. Fu and Z. Zhang, International Journal of Heat and Mass

Transfer 49, 1703 (2006).
[12] L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, Applied

Physics Letters 92, 133106 (2008).
[13] R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock,

G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting,
Physical Review Letters 107, 014301 (2011), arXiv:1103.2389.

[14] P. J. Van Zwol, K. Joulain, P. Ben-Abdallah, and J. Chevrier,
Physical Review B 84, 161413 (2011).

[15] S. Basu and Z. M. Zhang, Journal of Applied Physics 105,
093535 (2009).

[16] P. Ben-Abdallah and K. Joulain, Physical Review B 82, 121419
(2010), arXiv:1009.4598.

[17] E. Nefzaoui, Y. Ezzahri, J. Drévillon, and K. Joulain, The
European Physical Journal Applied Physics 63, 30902 (2013),
arXiv:1302.1718.

[18] S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and
J.-J. Greffet, Optics Express 19, A1088 (2011).

[19] M. Francoeur, S. Basu, and S. J. Petersen, Optics Express 19,
18774 (2011).

[20] K. Joulain, J. Drevillon, and P. Ben-Abdallah, Physical Review
B 81, 165119 (2010).

[21] S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, Physical Re-
view Letters 109, 104301 (2012).

[22] S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah,
Applied Physics Letters 102, 131106 (2013).

[23] Y. Guo and Z. Jacob, Optics Express 21, 15014 (2013).
[24] E. E. Narimanov and I. I. Smolyaninov, in Quantum Electron-

ics and Laser Science Conference (Optical Society of America,
2012).

[25] S.-A. Biehs, D. Reddig, and M. Holthaus, The European Phys-
ical Journal B 55, 237 (2007).

[26] M. Francoeur, M. P. Menguc, and R. Vaillon, Applied Physics
Letters 93, 043109 (2008).

[27] M. Francoeur, M. Pinar Mengüç, and R. Vaillon, Journal of
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