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In dense multiple scattering media, optical fields evolve through both homogeneous and evanescent waves. New regimes 
of light transport emerge because of the near-field coupling between individual scattering centers at mesoscopic scales. We 
present a novel propagation model that is developed in terms of measurable far- and near-field scattering cross-sections. 
Our quantitative description explains the increase of total transmission in dense scattering media and its accuracy is 
established through both full-scale numerical calculations and enhanced backscattering experiments.   

PACS numbers: 42.25.Dd  Wave propagation in random media , 42.68.Ay Propagation, transmission, attenuation, and radiative transfer  
 

 Due to scattering in complex media, the phase, 
amplitude, and frequency of waves change 
randomly in time and space. The magnitude and 
direction of the power flux density changes 
continuously. Without accounting explicitly for 
wave-like manifestations (diffraction or 
interference), the energy transport is described as 
the conservation of so-called specific intensity [1]. 
When the radiation propagates over a distance
  ds  along the direction s , the specific intensity 
reduces with ( )  sca absdI Idsρ σ σ= − +  due to 
scattering and absorption but, at the same time, it 
also increases because of scattering with 
probability ( )  ,P ′s s  from different directions ′s  
into s . There are no practical solutions for this 
radiative transport depiction in most realistic 
situations. However, an angular moments 
expansion of the specific intensity leads to the 
ubiquitous description of diffusive transport [1]. 
This diffusion approximation is valid when the 
energy dissipation is minimal, the effective 
scattering is isotropic, and the source-detector 
separation is large compare to scattering length 
scales. 

The diffusive energy transfer is characterized 
by different scales. Aside from absorption  absl .  
and scattering scal  lengths, one also defines a 

transport mean-free path ( )* / 1  scal l g= − as the 
scale over which the isotropic diffusion 
establishes. The scattering asymmetry parameter 
g is defined [2] as the average of the cosine of the 
scattering angle   g cos θ≡< > .  At this scale, the 
directional energy flux is randomized through 
successive scattering events. It is because of this 

randomization that details of particular 
interaction events are averaged out and simple 
energetic arguments provide an acceptable 
description of light propagation. A common 
representation of energy transport depicts the 
process as a classical random walk of particles of 
energy, photons [3]. The dynamic properties of this 
diffusion of photons can be described in terms of 
the scattering and dwell times involved and the 
associated velocities for phase, group, and energy 
transport [4,5].  

Structural properties of random media 
determine different regimes of mesoscopic light 
transport. When the separation between 
scattering centers is much larger than the 
wavelength, the scattering events are considered 
to be independent. In this independent scattering 
approximation (ISA) the transport mean-free path

( ) 1*
0   1ISAl n gσ −

⎡ ⎤= −⎣ ⎦  depends only on the number 
density 0n  of scattering centers, the optical cross 
section σ  of an individual scatterer, and the 
asymmetry parameter, or mean cosine angle, g of 
a generic scattering event [2]. 

As the concentration of scatterers rises, the 
inter-particle distances decrease and their spatial 
locations become correlated leading to possible 
local interferences. The phase correlation between 
the scattered waves weakens the effective cross-
section below that of an individual scattering 
event. This collective scattering (CS) is quantified 
by the structure factor ( )  S q  determined by the 
pair-correlation function characterizing the spatial 
distribution of the scattering potential. In this 
case, the scattering phase function is 
renormalized  ෩ܲ ሺݍሻ ൌ ܲሺݍሻܵሺݍሻ , which, in turn, 



modifies the effective scattering cross-section
( )    CS P q qdqσ = ∫ . The renormalization of the 

scattering process leads to a coherent correction
( )

1*  
0  1CS CS CSl n gσ

−
⎡ ⎤= −⎣ ⎦  for the transport mean 

free path. The correlated particles can, therefore, 
be regarded as collections of pseudo-scattering 
centers that are characterized by a modified 
scattering form factor [6,7]. In this interpretation, 
there is no further interaction between these 
fictitious scatterers. The interference between the 
scattered waves can increase the forward 
scattering and weaken the effective cross-section 
below that of an individual scattering event, 

  CSσ σ< .  Positional correlations then lead to 
significantly large (wavelength dependent) 
transport mean free paths, which are responsible, 
for example, for the relatively large conductivity of 
disordered liquid metals [8,9] or the transparency 
of the cornea to visible light [10,11]. However, 
short-range order can also lead to an enhanced 
effective cross section and negative values of the 
asymmetry parameter as it has been recently 
shown in experiments in colloidal liquids [12] and 
amorphous photonic materials [13,14]. The 
wavelength dependence of CS scattering is also 
the origin of natural structural coloration [15-17]. 

Multiple scattering effects are not considered 
within the CS description. As the particle density 
increases, the actual field incoming towards the 
scatter includes not only the initial external field 
but also the fields scattered by the surrounding 
particles. In analogy with effective medium 
theories [18,19], different methods were proposed 
for homogenizing the environment, surrounding 
the location of a singular scattering event. A 
common approach is to use a modified form factor 

( )P q  corresponding to an isolated scatterer in a 
background with an effective refractive index, neff, 
and then use this information in conventional 
transport descriptions [13,16,20]. This refractive 
index homogenization eliminates the influence of 
the specific environment but a far-field description 
of scattering is still necessary.  

At even higher densities, even this CS 
description fails [21,22] because, in close 
proximity, scattering centers can also interact 
through evanescent fields. This is clearly beyond 
the previous descriptions which not only consider 
the scatterers to act independently of their specific 
environment but also describe the scattering in 
terms of far-field properties such as Mie cross-
sections. Thus far, a precise, quantitative 

depiction of scattering for the case when the 
particles are located in the near-field of each other 
is still missing even for the canonical example of 
spherical scatterers.  

 
FIG. 1. (a - c) Intensity distributions in the cross-sectional 
areas of 3D slabs with reducing lengths as indicated. The 
media contain a=100nm radius TiO2 particles randomly 
dispersed throughout the volume. Rings colored in gray denote 
particles located in the considered cross-section while the white 
and blue ones indicate particles situated at 100nm above and, 
respectively, below that plane. (d) Total transmission as a 
function of inverse thickness. The blue and black symbols 
designate the ISA and the results of T-matrix calculations, 
respectively. The inset illustrates the appearance of additional 
transmission channels due to near-field coupling (see text). 

To set the limits for the conventional 
description of light transmission and to get 
quantitative insights into the physical situations 
typical to dense media, we first conducted 
systematic numerical calculations.  Using a 
multiple sphere T-matrix (MSTM) approach [23], 
we evaluated rigorously the field distribution 
inside 3D composite media containing various 
distributions of particles. Typical results are 
shown in Fig. 1(a-c) for the situation where 
particles in different concentrations are 
distributed throughout a cylindrical slab with 
dferent thicknesses L . More details about these 
calculations are included in the Supplementary 
Materials [24]. It is readily observed in the figure 
that, as the concentration of particles increases, 
the mean inter-particle distance decreases and 
more and more localized coupling occurs between 
neighboring particles. 

In the classical description of diffusive 
transport through a slab of volume V  and area 
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A , the transmission scales according to Ohm’s 

law: ( ) ( )* / / 1 / 1T l L V N g L A N gσ σ∝ = − = −  [28]. 
This means that for a fixed ratio of area of the slab 
to number of particles  /A N , the transmission is 
independent of the length of the medium. 
However, as apparent from the results of our 
simulations summarized in Fig. 1(d), the 
transmittance actually increases. This process 
could be interpreted as a rise in the effective value 
of *l  or, alternatively, it can be described as the 
emergence of a different regime of mesoscopic 
transport. 

 When propagating in highly scattering media, 
optical waves comprise both homogeneous and 
inhomogeneous components. Thus, the energy is 
not only carried by propagating waves but it also 
evolves through evanescent coupling between 
individual scatterers. For linear random media, as 
scatterers become optically connected [21], near 
the onset of percolation, the near-field coupling 
between particles can be seen as an opening of 
new transmission, optically connected, channels as 
suggested in the inset of Fig. 1d. High 
transmission through three-dimensional lattices of 
close packed spheres has been qualitatively 
explained as a percolation of light through 
overlapping whispering gallery modes [29]. In 
contrast with electronic systems, the appearance 
of optically connected channels is not expected to 
lead to percolation threshold phenomena [30]. 
Since power flow through both connected and 
scattering channels, the behavior of the 
transmittance should resemble that of thermal 
conductance of composites near percolation [31]: 
these new optically connected channels can be 
seen as adding parallel resistors to the (far-field) 
scattering channels (see insert in Fig. 1(d)). As a 
result, the opening of these additional channels 
increases the overall transmission:  

( )* * 1
CS NF CS NFT T T l l L−= + = + .            (1) 

In terms of discrete scattering processes, one 
can consider two types of events: (i) conventional 
Mie-like scattering where the illumination is 
provided by a plane wave and (ii) scattering events 
excited by evanescent waves.  Of course, correcting 
the total transmission in this manner is 
practically relevant only if it can be described in 
terms of physically meaningful and measurable 
quantities such as a near-field scattering cross-
section  NFσ .  

There were several notable attempts to 
calculate analytically or evaluate numerically the 
scattering of evanescent wave by spherical objects 

[32,33]. It has been shown that the conventional 
Mie theory can be directly applied to scattering of 
evanescent waves through a complex angle 
rotation of the standard Mie solution [34,35]. In 
this approach, by rotating both the direction and 
the distribution of the incident electric 

( ) ( ) ( )ˆ ˆ [ ]y yE r R E R rγ γ= −
r rr r

 and magnetic 

( ) ( ) ( )[ ]ˆ ˆ
y yH r R H R rγ γ= −

r rr r
 fields by the complex 

angle γ , a z  propagating monochromatic plane 
wave can be transformed into an evanescent wave. 
Thus, including this transformation in the 
conventional Mie calculation, one can readily find 
the results of the scattering of evanescent 
electromagnetic waves from spherical particle. We 
note that, due to the exponential decay of the 
evanescent wave, the scattering has some atypical 
features. In standard Mie scattering, because of 
the spherical symmetry, there are no cross-
polarization terms in the scattering matrix. In the 
evanescent scattering however the exponentially 
decreasing amplitude introduces an asymmetry, 
which leads to such polarization mixing. Moreover, 
as opposed to standard theory, the Mie coefficients 
do not necessarily decrease with their order and 
the magnetic terms could actually be enhanced 
[32]. 

 This demonstrates that NFσ  can be not only 
measured experimentally but it can also be easily 
evaluated numerically in the case of a spherical 
scatterer. Details about both calculations and 
measurements based on near-field scanning 
optical microscopy (NSOM), of near-field 
scattering are included in [24]. 

Grounded on the complete description of the 
scattering process including both homogeneous 
and inhomogeneous excitation, one can re-
interpret the transport phenomena. Of course, 
particles can interact through evanescent waves 
only if they are in close proximity of each other. 
The process should therefore depend on both the 
number of scatterers per cubic wavelength 3 /on nλ  
and the strength of evanescent coupling 
determined by the average inter-particle distance
d [36], which, in turn, is set by the number 

density on . The probability for evanescent transfer 

can then be written as ( )3  / d
NF op n n e κλ −=  where 

κ  is the characteristic attenuation length for the 
evanescent waves. Thus, in the model where the 
light is transmitted through propagating and 
evanescent channels one can re-define the 
transport mean free path as 
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        (2) 

Because the decay rate of the evanescent waves 

depends on the incident angle, an average ( )… is 
taken over the angular domain defined by the 
refractive indices of the particle and its 
surrounding medium. Moreover, as we mentioned 
before, the near field cross-section and the 
asymmetry parameter are both polarization 
dependent and, therefore, the values in Eq. (2) are 
also averaged over the two polarization states.  

In practice, the complex angle rotation 
described before can be used to evaluate scattering 
properties such as scattering cross-sections and 
asymmetry parameters. These values can then be 
used in Eq. (2) to evaluate the transport mean free 
path for media with different particle 
concentrations. It is worth mentioning here that *l  
is the only directly measurable quantity in a 
multiple-scattering experiment such as, for 
instance, enhanced back scattering (EBS) 

To verify the accuracy of our model, we 
conducted an EBS experiment on colloidal media 
with increasing concentrations. We used aqueous 
suspensions silica particles with average diameter 
of 1 mμ . The schematic representation of the 
experimental setup is shown in Fig. 2(a). A 
collimated laser beam with 476nmλ = passes 
through a beam splitter and through a filter 
consisting of a linear polarizer followed by a 
quarter wave plate. The circular-polarization filter 
insures that no single-scattering contributions are 
collected. The circularly polarized beam further 
impinges on a glass cuvette containing colloidal 
suspension. The back-scattered light is deflected 
by the beam splitter and then is focused by a lens 
with 250 mm focal length on the plane of a CCD 
array (520 × 480 pixels array). During the 
measurements, an ensemble average is performed 
by recording typically 100 different data frames. 
Details about EBS measurements are included in 
[24]. 

The results corresponding to different colloidal 
concentrations are summarized in Fig. 2(b) where 
the experimental *l  values are normalized to the 
corresponding ones evaluated in the ISA 
framework.  As can be seen, when increasing the 
concentration of the particles, the measured 
transport mean free path starts to deviate from 
both the ISA predictions and the estimations 

based on the CS correction model. On the other 
hand, our near-field transmission model shows a 
remarkably good agreement with the experimental 
data. The remaining minor differences may 
attributed to experimental conditions such as 
internal reflection [26,27] and potential sample 
non-uniformities [37,38]. We note that this 
experimental demonstration augments the 
significance of our previous numerical 
calculations: the increase of *l  values due to 
additional near-field coupling is apparent in both 
transmission and reflection. At high volume 
fractions, both experimental and numerical data 
clearly illustrate the failure of the conventional 
description of scattering solely in terms of 
propagating waves.   

 

 
FIG. 2 (a) Enhanced backscattering setup. Abbreviations are as 
follows: E, beam expander; P, polarizers; BS, beam splitter; BD, 
beam dumper; QW, quarter-wave plate; C, Fourier lens; S, 
sample. (b) Measured transport mean free path compared with 
predictions of different transport models. 

In conclusion, we have quantitatively described 
the characteristics of multiple light scattering in 
dense composite media where particles are located 
in close proximity and interact through evanescent 
near fields. We have shown that a new regime of 



transmission emerges, which can be described in 
terms of physically meaningful and measurable 
quantities such a near-field scattering cross-
section  NFσ . In this regime, additional 
transmission channels open because of the near-
field interactions between scatterers placed in 
close proximity. 

A full-scale calculation of the electromagnetic 
field distribution in 3D random media indicates 
the emergence of additional channels for energy 
transfer. The model is also supported by the 
results of a comprehensive EBS experiment. We 
found that the transport mean free path 
corresponding to different concentration of 
scatterers is in very good agreement with our 
model for near-field corrected transport. The use of 
such detailed descriptors for individual scattering 
events not only improves the macroscopic 
description of light propagation in random media 
but it also enhances the predictive capabilities of 
light transport models. 
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